Solve

Problem 20901

Given that I0=1012I_{0}=10^{-12} watts/meter 2{ }^{2}, what is the intensity of a sound for which the decibel level of the sound measures 99 ? Round off your answer to three decimal places.
Answer How to enter your answer (opens in new window) Keyboard Sh \square watts/meter 2{ }^{2}

See Solution

Problem 20902

11 What is the perimeter of an equilateral triangle with a height of 6 feet? \begin{tabular}{|c|c|c|c|} \hline a & 232 \sqrt{3} & b & 636 \sqrt{3} \\ \hline c & 12312 \sqrt{3} & d & 434 \sqrt{3} \\ \hline \end{tabular}

See Solution

Problem 20903

I=x+1(x2+9)2dxI=\int \frac{x+1}{\left(x^{2}+9\right)^{2}} d x

See Solution

Problem 20904

Exercice 1 (C) -35 min 07 pt
On considère les polynômes PP et QQ définis par: P(x)=x36x2+9x+14 et Q(x)=x45x2+4P(x)=-x^{3}-6 x^{2}+9 x+14 \text { et } Q(x)=x^{4}-5 x^{2}+4
1. a) Vérifier que (1)(-1) est une racine de PP. b) Factoriser alors P(x)P(x). c) Résoudre dans R\mathbb{R} l'équation P(x)=0P(x)=0

En déduire l'ensemble des solutions dans IR de l'équation xx6x9x+14=0x \sqrt{x}-6 x-9 \sqrt{x}+14=0 b) a) Factoriser le trinôme T(x)=x25x+4T(x)=x^{2}-5 x+4. c) En déduire une factorisation du polynôme Q(x)Q(x). b) Résoudre dans R\mathbb{R} l'équation Q(x)=2\sqrt{Q(x)}=2 d) Soit f(x)=P(x)Q(x)x2+2x+5f(x)=\frac{P(x)-Q(x)}{x^{2}+2 x+5} a/ Déterminer le domaine de définition de ff. b/ Montrer que f(x)=x2+x+2f(x)=-x^{2}+x+2 et vérifier que f(x)f(x+1)=2xf(x)-f(x+1)=2 x c/ En déduire la somme Sn=1+2+3++nS_{n}=1+2+3+\cdots+n où n est un entier naturel supérieur à 2 .

See Solution

Problem 20905

Date: Name: \qquad \qquad RECOGNIZING STRUCTURE TO SOLVE TWO STEP EQUATIONS N-GEN MATH (8) 7{ }^{\text {(8) }} 7 HOMEWORK
Fluency
1. Which of the following is the solution to: 5(x+7)=505(x+7)=50 ? (1) x=1x=1 (3) x=3x=3 (2) x=8x=8 (4) x=11x=11
2. Which value below solves the equation: n62=4\frac{n-6}{2}=4 ? (1) n=10n=10 (3) n=8n=8 (2) n=14n=14 (4) n=7n=7
3. Solve each of the following equations in two different ways: (1) by reversing the order of operations and (2) by using the distributive property to simplify the left-hand side. (a) 5(x+3)=455(x+3)=45

Method (1) Method (2) (b) 3(n7)=273(n-7)=27
Method (1) Method (2) N-Gen Matis 7, Unit 6-Linear Equations and Inequalties - Lesson 5 eMATHinstruction, RED HooK, NY 12571, 02020

See Solution

Problem 20906

2 Дервен өнцегтийн өнцгүүд 1:5:2:4 харыцатай бол өнцег тус бүрийн хэмжәэг ar.

See Solution

Problem 20907

4 Хоёр машины нэг нь нөгөөгөөс 20\%-оор их хурдтай бол машинуудын хурдны харьцааг олоорой. Хэрэв нэг машин нь 60 км/ц хурдтай бол нөгөө машин ямар хурдтай байх вэ?

See Solution

Problem 20908

6. Жимсний шүүс хийхэд алим ба нимбэг 3:53: 5 харьцаатай оржээ. Алим нь нимбэгний хэдэн процент болох вэ?

See Solution

Problem 20909

3. If y=(cosh2(3x)sinh2(3x))4y=\left(\cosh ^{2}(3 x)-\sinh ^{2}(3 x)\right)^{4} then dydx\frac{d y}{d x} at x=0x=0 is: a. 1 b. 0 c. 2 d. -1

See Solution

Problem 20910

For the probability mass function f(x,y)=x+y250\mathrm{f}(\mathrm{x}, \mathrm{y})=\frac{x+y}{250} for x=3,4,5,6,7x=3,4,5,6,7 and y=3,4,5,6,7y=3,4,5,6,7
Find P(X=3Y=7)P(X=3 \mid Y=7) (Write in the form of an integer)

See Solution

Problem 20911

TICE TEST
21 Mark for Review
In the xyx y-plane, line \ell passes through the point (0,0)(0,0) and is parallel to the line represented by the equation y=8x+2y=8 x+2. If line \ell also passes through the point (3,d)(3, d), what is the value of dd ? \square
Answer Preview: \square Show Keypad

See Solution

Problem 20912

For the probability mass function f(x)=x155f(x)=\frac{x}{155} for x=10,11,,20x=10,11, \ldots, 20 Find F(15) (Write in the form of an integer or decimal)
Answer:

See Solution

Problem 20913

For the joint probability density function f(x,y)=f(x, y)= 2x+2y90\frac{2 x+2 y}{90} for 1x4&1y41 \leq \mathrm{x} \leq 4 \& 1 \leq \mathrm{y} \leq 4, and f(x,y)=0\mathrm{f}(\mathrm{x}, \mathrm{y})=0 elsewhere
Find P(1<X<2,3<Y<4)P(1<X<2,3<Y<4) (Write in the form of an integer or decimal)
Answer: \square

See Solution

Problem 20914

3) I=x2coshxdxI=\int x^{2} \cosh x d x (5 points)

See Solution

Problem 20915

For the joint probability density function f(x,y)=2x+2y90f(x, y)=\frac{2 x+2 y}{90} for 1x4&1y41 \leq x \leq 4 \& 1 \leq y \leq 4, and f(x,y)=0f(x, y)=0 elsewhere
Find P(3<X<4,3<Y<4)P(3<X<4,3<Y<4) (Write in the form of an integer or decimal)
Answer: \square

See Solution

Problem 20916

9. Find the zeros of f(x)=x(x+2)3.f(x)=x(x+2)^{3} .
List them in order of least to greatest, separated by commas. If the multiplicity is more than one, only list the zero once.

See Solution

Problem 20917

Вариант 1 1) Выполните умножение одночленов a) 23a12ab2\frac{2}{3} a \cdot 12 a b^{2} б) 0,5x2y(xy)0,5 x^{2} y \cdot(-x y) в) 0,4x4y22,5x2y4-0,4 x^{4} y^{2} \cdot 2,5 x^{2} y^{4} 2) Возведите одночлен в указанную степен а) (12ab)3\left(-\frac{1}{2} a b\right)^{3} б) (2kx2)2-\left(2 k x^{2}\right)^{2} B) (10s3b2)4\left(-10 s^{3} b^{2}\right)^{4} 3) Выполните действия a) 20a3(5a)220 a^{3} \cdot(5 a)^{2} б) 0,4x5-0,4 x^{5} (2x3)4\left(2 x^{3}\right)^{4} в) (3x6y3)4(181xy2)\left(3 x^{6} y^{3}\right)^{4} \cdot\left(-\frac{1}{81} x y^{2}\right)

See Solution

Problem 20918

Let S={E1,E2,E3,E4}S=\left\{E_{1}, E_{2}, E_{3}, E_{4}\right\} be the sample space of an experiment. Event A={E1,E2}A=\left\{E_{1}, E_{2}\right\}. Event B={E3}B=\left\{E_{3}\right\}. Event C={E2,E3}C=\left\{E_{2}, E_{3}\right\}. The probàbilities of the sample points are assigned as follows: \begin{tabular}{cc} \hline Sample point & Probability \\ \hlineE1E_{1} & 0.1496 \\ E2E_{2} & 0.1852 \\ E3E_{3} & 0.2457 \\ E4E_{4} & 0.4195 \\ \hline \end{tabular}
Then, P(AB)P(A \cup B) is equal to
Select one: a. 0.3953 b. 0.0000 c. 0.1496 d. 0.2457 e. 0.4309 f. 0.3348 g. 0.5805 h. 1.0000 i. 0.1852

See Solution

Problem 20919

6. Evaluate limxπ2(sinxcosx)tanx\lim _{x \rightarrow \frac{\pi}{2}}(\sin x-\cos x)^{\tan x} [5 pts]

See Solution

Problem 20920

b. limx0(sinxx)1x3\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{\frac{1}{x^{3}}}

See Solution

Problem 20921

(4) (3mn=7)721m+6n=29\begin{array}{l}(3 m-n=7) 7 \\ 21 m+6 n=-29\end{array}

See Solution

Problem 20922

2. Каждые полчаса гидролог замеряет температуру воды в водоеме и получает следующий ряд значений: 12,8;13,1;12,7;13,2;12,7;13,3;12,6;12,98 ; 13,1 ; 12,7 ; 13,2 ; 12,7 ; 13,3 ; 12,6 ; 12,9; 12,7;13;12,77 ; 13 ; 12,7. Найдите медиану этого ряда.

See Solution

Problem 20923

Q3. A car of mass 800 kg is travelling along a straight horizontal road. A constant retarding force of FN reduces the speed of the car from 18 ms118 \mathrm{~ms}^{\wedge}-1 to 12 ms112 \mathrm{~ms}^{\wedge}-1 in 2.4 s . Calculate: (a) the value of FF
Answer: \square

See Solution

Problem 20924

السؤال الاول : ( 25 علامة ) جد التكامل اكتب خطوات الحل )

See Solution

Problem 20925

limx1+lnx1\lim _{x \rightarrow 1^{+}}-\ln x-1

See Solution

Problem 20926

السؤال الاول : ( 25 علامة ) جد التكامل (sin اكتب خطوات الحل )

See Solution

Problem 20927

السؤال الاول : ( 25 علامة ) جد التكامل اكتب خطوات الحل )

See Solution

Problem 20928

3. x+5=14xx+5=\frac{14}{x}
5. x+4xx3=12x3x+\frac{4 x}{x-3}=\frac{12}{x-3}

See Solution

Problem 20929

2. A store is to be built within a rectangular lot. The lot measures 70 m by 45 m . A lawn of uniform width, equal to the area of the store, must surround the store and be within the boundaries of the lot. How wide is the strip of lawn, to the nearest tenth? ( 6 marks)

See Solution

Problem 20930

10. 11k+2=2411 k+2=24

See Solution

Problem 20931

7. Calculate the value of the following limit: limn(1+21ln(n7))ln(10n)\lim _{n \rightarrow \infty}\left(1+\frac{21}{\ln \left(n^{7}\right)}\right)^{\ln (10 n)}
ANS:

See Solution

Problem 20932

10. x+6x=7x+\frac{6}{x}=-7
12. 23x+4=12x2+4x2-\frac{3}{x+4}=\frac{12}{x^{2}+4 x}

See Solution

Problem 20933

6. Find the positive value of xx that solves the following equation: x60=k=030(30k)2030kx^{60}=\sum_{k=0}^{30}\binom{30}{k} 20^{30-k}
ANS:

See Solution

Problem 20934

8. Calculate the value of the following limit: limnn4+n2n45n2+n\lim _{n \rightarrow \infty} \sqrt{n^{4}+n^{2}}-\sqrt{n^{4}-5 n^{2}+n}
ANS:

See Solution

Problem 20935

9. Calculate the value of the following limit: limn(sinn(π/6)+sinn(π/3)+sinn(π/2))1/n\lim _{n \rightarrow \infty}\left(\sin ^{n}(\pi / 6)+\sin ^{n}(\pi / 3)+\sin ^{n}(\pi / 2)\right)^{1 / n}
ANS:

See Solution

Problem 20936

10. Calculate the value of the following series: k=21(3k+1)(3k+4)\sum_{k=2}^{\infty} \frac{1}{(3 k+1)(3 k+4)}
ANS:

See Solution

Problem 20937

38. -13
39. 7137 \frac{1}{3}
40. -0.028
41. -3.2
42. MUSIC Nicolás practiced playing the cello for 2 hours and 18 minutes. Write the time Nicolás spent practicing as a decimal.

See Solution

Problem 20938

3. If S(N)=k=1NkS(N)=\sum_{k=1}^{N} k then which value of NN solves the following equation? n=1S(N)4n=43(4551).\sum_{n=1}^{S(N)} 4^{n}=\frac{4}{3}\left(4^{55}-1\right) .
ANS: \qquad

See Solution

Problem 20939

4. Solve the equation sin(8x)=sin(7x)cos(x)\sin (8 x)=\sin (7 x) \cos (x) for x(0,π)x \in(0, \pi).
ANS:

See Solution

Problem 20940

5. If a savings account offers a nominal interest rate of 3%3 \% per year, compounded every four months, then how many years will it take for a deposit to double in value?
ANS:

See Solution

Problem 20941

Given that Alice and Bob are using the block cipher εk()\varepsilon_{k}(\cdot) with the 5 -bit block b:b1b2b3b4b5b: b_{1} b_{2} b_{3} b_{4} b_{5} and the 5 -bit key k:k1k2k3k4k5k: k_{1} k_{2} k_{3} k_{4} k_{5} to encrypt according to the rule εk(b)=kb\varepsilon_{k}(b)=k \oplus b. Additionally, to encrypt multiple blocks using the primitive Ek()\mathcal{E}_{k}(\cdot), Alice and Bob are using the counter (CTR) mode. Assume the key agreed upon is (10001)2(\mathbf{1 0 0 0 1})_{2} and the initialization vector (IV) generated at encryption time is (10011)2(\mathbf{1 0 0 1 1})_{2}. What is the ciphertext that Bob receives when Alice sends the plaintext (0101001010)2(0101001010)_{2} ?

See Solution

Problem 20942

(4)+(5)=9(-4)+(-5)=-9

See Solution

Problem 20943

ANS: x(1,5)18;+x \in(1,5) \cup 18 ;+
3. If S(N)=k=1NkS(N)=\sum_{k=1}^{N} k then which value of NN solves the following equation? n=1S(N)4n=43(4551)\sum_{n=1}^{S(N)} 4^{n}=\frac{4}{3}\left(4^{55}-1\right)

ANS: N=10N=10

See Solution

Problem 20944

A multiple choice quiz has three questions, each with five answer choices. Only one of the choices is correct. You have no idea what the anwer is to any question and have to guess each answer.
2 Numeric 1 point What is the probability of answering the first question correctly?
Type your answer...
3 Numeric 2 points What is the probability of answering the first two questions correctly?
Type your answer...
4 Numeric 2 points What i the probability of answering all three questions correctly? Type your answer...

See Solution

Problem 20945

17. Mark said that the product of 0.02 and 0.7 is 14 . Mark is wrong. What is the product?

See Solution

Problem 20946

7. ddx[x2(x3+7)]\frac{d}{d x}\left[x^{2}\left(x^{3}+7\right)\right]
8. ddx(2x3)2\frac{d}{d x}(2 x-3)^{2}
9. ddx[x5+6x4+5x3x2]\frac{d}{d x}\left[\frac{x^{5}+6 x^{4}+5 x^{3}}{x^{2}}\right]
10. ddx[(3x4+7)(x35x)]\frac{d}{d x}\left[\left(3 x^{4}+7\right)\left(x^{3}-5 x\right)\right]
11. ddx[5x+63x7]\frac{d}{d x}\left[\frac{5 x+6}{3 x-7}\right]
12. ddx[(7x+4)(x2+8)]\frac{d}{d x}\left[(7 x+4)\left(x^{2}+8\right)\right]

See Solution

Problem 20947

Q14: For a random variable XX with CDF F(x)=1ex,x>0F(x)=1-e^{-x}, x>0, find the pdf f(x)f(x) and P(X=0.2)P(X=0.2)

See Solution

Problem 20948

Find the work done by F=(x2+y)i+(y2+x)j+zzk\mathbf{F}=\left(x^{2}+y\right) \mathbf{i}+\left(y^{2}+x\right) \mathbf{j}+z^{z} \mathbf{k} over the following paths from (2,0,0)(2,0,0) to (2,0,4)(2,0,4). a. The line segment x=2,y=0,0z4x=2, y=0,0 \leq z \leq 4 b. The helix r(t)=(2cost)i+(2sint)j+(2tπ)k,0t2πr(t)=(2 \cos t) i+(2 \sin t) j+\left(\frac{2 t}{\pi}\right) k, 0 \leq t \leq 2 \pi c. The xx-axis from (2,0,0)(2,0,0) to (0,0,0)(0,0,0) followed by the parabola z=x2,y=0z=x^{2}, y=0 from (0,0,0)(0,0,0) to (2,0,4)(2,0,4)
The work done by F over the line segment is 3e+13 e^{\top}+1. b. Find dfdt\frac{\mathrm{df}}{\mathrm{dt}} for FF. A. dfdt=8cos2tsint4sin2t+sin2tcost+4cos2t+4tπ2e2t/π\frac{\mathrm{df}}{\mathrm{dt}}=-8 \cos ^{2} \mathrm{t} \sin \mathrm{t}-4 \sin ^{2} \mathrm{t}+\sin ^{2} \mathrm{t} \cos \mathrm{t}+4 \cos ^{2} \mathrm{t}+\frac{4 \mathrm{t}}{\pi^{2}} e^{2 t / \pi} B. dfdt=sint+cost+1πe1/π\frac{\mathrm{df}}{\mathrm{dt}}=-\sin \mathrm{t}+\cos \mathrm{t}+\frac{1}{\pi} e^{1 / \pi} C. dfdt=13(cos3t)+costsint+13(sin3t)+2tπe2t/πe2t/π\frac{\mathrm{df}}{\mathrm{dt}}=\frac{1}{3}\left(\cos ^{3} \mathrm{t}\right)+\cos \mathrm{t} \sin \mathrm{t}+\frac{1}{3}\left(\sin ^{3} \mathrm{t}\right)+\frac{2 \mathrm{t}}{\pi} e^{2 \mathrm{t} / \pi}-e^{2 \mathrm{t} / \pi} D. dfdt=cos3t+2costsint+sin3t+4tπ2e2t/πe2t/π\frac{\mathrm{df}}{\mathrm{dt}}=\cos ^{3} \mathrm{t}+2 \cos \mathrm{t} \sin \mathrm{t}+\sin ^{3} \mathrm{t}+\frac{4 \mathrm{t}}{\pi^{2}} e^{2 \mathrm{t} / \pi}-e^{2 \mathrm{t} / \pi}

See Solution

Problem 20949

Q15: For XB(n,p)X \sim B(n, p) we have Var(X)=0.8E(X)\operatorname{Var}(X)=0.8 E(X). Find pp

See Solution

Problem 20950

8. a) A stationer buys 1 dozen of pens at Rs 20 each and sells them at Rs 25 each. (ii) Find the cost price and selling price of 1 dozen of pens. (ii) How much profit does he make in 1 dozen of pens. (iii) Express his profit into profit percent. (iv) If he had given Re 1 discount in each pen, what would be his profit percent? b) A grocer purchased 5 dozen of eggs at Rs 12 each. 10 eggs were broken and he sold the remaining eggs at Rs 14 each. (i) Find the cost price of total number of eggs and the selling price of the remaining number of eggs. (ii) Calculate his profit or loss and express it in percent. (iii) If non of the eggs were broken, how much profit or loss percent would he make? c) A fruit seller sold 50 kg of oranges at the rate of Rs 80 per kg and gained Rs 800. (i) Find the selling price of 50 kg of oranges. (ii) At what rate of price did he buy the oranges? (iii) Calculate his profit percent.
1 kg d) A vegetable seller purchased 1 quintal of potatoes at Rs 35 per kg and sold at a loss of Rs 350\mathbf{3 5 0}. Find: (i) the rate of selling price (ii) Loss percent.

See Solution

Problem 20951

12. Numa experiência, Acontecimento é um subconjunto do espaço amostral. Diz-se que um Acontecimento é elementar se é constituído por... A um único resultado. C todos os elementos. B mais do que um resultado. D nenhum elemento.
13. Quantos elementos terá o espaço amostral de uma experiência que consiste em lançar três dados de cores diferentes e registar os resultados obtidos nas faces superiores? A 124 (B) 216

C 432 D 648
14. A probabilidade de ganhar uma bicicleta numa rifa de 100 bilhetes da qual você comprou 4 é...

A 1100\frac{1}{100} B 150\frac{1}{50} (C) 125\frac{1}{25}
D 110\frac{1}{10}
15. Qual é a probabilidade de obter pelo menos uma cara no lançamento de três moedas?

A 78\frac{7}{8} B 58\frac{5}{8} C 38\frac{3}{8} (D) 18\frac{1}{8}
16. Uma sucessão de termo geral an\boldsymbol{a}_{\boldsymbol{n}} é estritamente crescente se para nN\forall \boldsymbol{n} \in \mathbb{N}... (A) an+1>ana_{n+1}>a_{n}

B an+1<ana_{n+1}<a_{n} C an+1ana_{n+1} \leq a_{n} D an+1ana_{n+1} \geq a_{n}
17. Qual é o termo geral de uma progressão geométrica cuja razão é 2 e u2=3u_{2}=3 ?

A un=32n1u_{n}=3 \cdot 2^{n-1} B un=23n1u_{n}=2 \cdot 3^{n-1} (C) un=32n2u_{n}=3 \cdot 2^{n-2}
D un=23n2u_{n}=2 \cdot 3^{n-2}
18. Quais são os primeiros seis termos da sucessão un=2n1u_{n}=2 n-1 ?

A 2,4,6,8,10,12\mathbf{2}, \mathbf{4}, \mathbf{6}, \mathbf{8}, \mathbf{1 0}, \mathbf{1 2}... C 0,2,4,6,8,10,120,2,4,6,8,10,12 \ldots B 1,1,3,5,7,9,-1,1,3,5,7,9, \ldots (D) 1,3,5,7,9,111,3,5,7,9,11 \ldots
19. Numa sucessão de termo geral an=2n2+55a_{n}=\frac{2 n^{2}+5}{5}, o décimo termo é...

A 40 (B) 41
C 42 D 43
20. Qual é 44^{\circ} termo de uma Progressão Geométrica, cujo primeiro termo é -4 e a razão é 2 ?

A - 128 B -64 (C) -32
D -16

See Solution

Problem 20952

30 points possible Answered: 20/30 Question 25
Find the area and perimeter of the figure shown below. Note, all angles are right angles. area == \square square units perimeter == \square units
Question Help: \square Video Next Question

See Solution

Problem 20953

5) Complete the table using the function y=3x4y=3 x-4.

See Solution

Problem 20954

Calculator
Solve for xx in this figure. Enter your answer in the box. x=x=

See Solution

Problem 20955

(iii) Evaluate the following without using log tables: 2log5+log3+3log212log362log102 \log 5+\log 3+3 \log 2-\frac{1}{2} \log 36-2 \log 10

See Solution

Problem 20956

point(s) possible
Mendel found no dominance in snapdragons (in contrast to peas) with respect to red and white flower color. When pure red and pure white parents are crossed (First to Second Generation table), the resulting Rr combination (one of each gene) produces second-generation offspring with pink flowers. These second-generation pinks, however, still carry one red and one white gene, so when they are crossed, the third generation will be governed by the Second to Third Generation table.
First to Second Generation \begin{tabular}{|l|c|c|c|} \hline \multirow{2}{*}{\multicolumn{2}{|c|}{}} & \multicolumn{2}{c|}{ Second Parent } \\ \cline { 2 - 4 } & r\mathbf{r} & r\mathbf{r} \\ \hline First & R & Rr & Rr \\ \hline & R & Rr & Rr \\ \hline \end{tabular}
Second to Third Generation \begin{tabular}{|l|c|c|c|} \hline \multirow{2}{*}{\multicolumn{2}{|c|}{}} & \multicolumn{2}{|c|}{ Second Parent } \\ \cline { 3 - 4 } & R & r \\ \hline First & R & RR & Rr \\ \hline & r & R & π\pi \\ \hline \end{tabular}
Here RR=red,Rr=\mathrm{RR}=\mathrm{red}, \mathrm{Rr}= pink, rR=\mathrm{rR}= pink, and rr=\mathrm{rr}= white. Find the probability that a third-generation snapdragon is pink. P(P( pink )=)= \square (Type an integer or a fraction.)

See Solution

Problem 20957

For the triangle shown below, use your calculator to solve for the missing sides and angles. θ=\theta= \square degrees f=f= \square e=e= \square Round your answers to two decimal places. Question Help: Video 1 Video 2

See Solution

Problem 20958

11+2xdx\int \frac{1}{1+2 x} d x

See Solution

Problem 20959

2. 4. What is the conductance of a 39Ω39 \Omega resistor? Ans. 25,6 mS.

See Solution

Problem 20960

Use counters to subtract -6 - 5\mathbf{- 5}. You start with: (- \longrightarrow - \square You subtract: (- \infty - \square Which picture shows the difference? (-) (5) \square (5)

See Solution

Problem 20961

Multiply: 20×12=-20 \times-12= \square
Save answer

See Solution

Problem 20962

What is 634?\left|-6 \frac{3}{4}\right| ? 5345 \frac{3}{4} 1 6346 \frac{3}{4} 5-5
Save answer

See Solution

Problem 20963

8. 11. The conductance of a wire is 2,5 S2,5 \mathrm{~S}. Another wire of the same material and at the same temperature has a diameter one-forth as great and the length twice as great. Find the conductance of the second wire. Ans. 78,1mS78,1 \mathrm{mS}.

See Solution

Problem 20964

14. 17. Find the temperature coefficient of resistance of iron at 20C20^{\circ} \mathrm{C}, if iron has an inferred zero resistance temperature 162C-162^{\circ} \mathrm{C} ? Ans 0,00551/C0,00551 /{ }^{\circ} \mathrm{C}-

See Solution

Problem 20965

Multiply. 3×1.7=-3 \times 1.7=

See Solution

Problem 20966

Problem 8. An e.m.f. of 250 V is connected across a resistance and the current flowing through the resistance is 4 A . What is the power developed? Ans. 1 kW.

See Solution

Problem 20967

Exercice 8 : 1) Annoter le schéma suivant 2) Au de la synthèse de l'eau on mélange 60 cm360 \mathrm{~cm}^{3} de dioxygène et de dihydrogène. Après passage d'une étincelle électrique il reste 15 cm315 \mathrm{~cm}^{3} de dioxygène dans l'eudiomètre a) Quel est le volume de gaz disparu ? b) Quel est le volume dioxygène disparu? c) Quel est le volume dihydrogène disparu?
Exercice 9: Une salle de théâtre à la forme d'un cône dont le diamètre est de 10 m et de hauteur 7 m 1) Calcule le volume d'air dans la salle de théâtre ( V=πr2hV=\pi r^{2} h ) 2) Calcule les volumes des gaz majoritaires dans cette salle (le volume de dioxygène et diazote)

See Solution

Problem 20968

Найдите d8f(1,0)d^{8} f(1,0) для функции f(x,y)=x2e2yf(x, y)=x^{2} e^{2 y}.

See Solution

Problem 20969

Round 2.85 to the nearest tenth.
Answer Altempt 1 out of 5

See Solution

Problem 20970

Question
Round 9.42 to the nearest tenth.
Answer Attempt 1 out of 5

See Solution

Problem 20971

Question
Round 9.32 to the nearest tenth.
Answer Attempt 1 out of 5

See Solution

Problem 20972

3. Find the missing measures.

See Solution

Problem 20973

Question
Round 6.17 to the nearest tenth.

See Solution

Problem 20974

5. If the measure of an angle is 3838^{\circ}, find the measure of its complement.

See Solution

Problem 20975

Question
Round 6.452 to the nearest tenth.
Answer Attempt i out of 5

See Solution

Problem 20976

6. 1\angle 1 and 2\angle 2 form a linear pair. If m1=(5x+9)m \angle 1=(5 x+9)^{\circ} and m2=(3x+11)m \angle 2=(3 x+11)^{\circ}, find the measure of each angle.

See Solution

Problem 20977

Question
Round 4.79 to the nearest tenth.

See Solution

Problem 20978

3 . Find the distance between point AA and Point CC on the graph below.
Distance == \square units

See Solution

Problem 20979

Question
Round 7.92 to the nearest tenth.

See Solution

Problem 20980

31. The sum of two numbers is 37 . One number is 5 more than the other. Find the numbers.

See Solution

Problem 20981

19. Use voltage division twice to find the voltage UU in the circuit given below. Ans. 36V.

See Solution

Problem 20982

For each pair of functions ff and gg below, find f(g(x))f(g(x)) and g(f(x))g(f(x)). Then, determine whether ff and gg are inverses of each other. Simplify your answers as much as possible. (Assume that your expressions are defined for all xx in the domain of the composition. You do not have to indicate the domain.) (a) f(x)=2x,x0f(x)=-\frac{2}{x}, x \neq 0 (b) f(x)=3x+5f(x)=3 x+5 g(x)=2x,x0f(g(x))=g(f(x))=\begin{array}{l} g(x)=-\frac{2}{x}, x \neq 0 \\ f(g(x))=\square \\ g(f(x))=\square \end{array} ff and gg are inverses of each other ff and gg are inverses of each other ff and gg are not inverses of each other ff and gg are not inverses of each other

See Solution

Problem 20983

4. Three parallel resistors have a total conductance of 2 mS . If two of the resistors are 1 and 5kΩ5 \mathrm{k} \Omega what is the third resistance? Ans. 1,25 k

See Solution

Problem 20984

3. x+y=8x+2y=7\begin{aligned} x+y & =8 \\ -x+2 y & =7\end{aligned}

See Solution

Problem 20985

THE QUADRATIC FORMULA There once lived a \qquad x25x+3=0x^{2}-5 x+3=0 near the \qquad x=7±296x=\frac{7 \pm \sqrt{29}}{-6} \square \square 9±734\frac{-9 \pm \sqrt{73}}{4} x=3/2,x=1/3x=-3 / 2, x=1 / 3 suntan \begin{tabular}{c} x=1±8510x=\frac{1 \pm \sqrt{85}}{10} \\ swords \end{tabular}\quad\begin{tabular}{c} x=2,x=1/3x=-2, x=-1 / 3 \\ crcus \end{tabular} \square x=2,x=1/3x=-2, x=-1 / 3 crcus  crcus 7±73\frac{\text { crcus }}{7 \pm \sqrt{73}} \square Who thought he'd found \qquad 5x2+x=35 x^{2}+x=3 i \square \square x=5,x=1/2x=-5, x=-1 / 2 tasted x=7±736x=\frac{7 \pm \sqrt{73}}{-6} He took a \qquad \square 4x2+1=9x-4 x^{2}+1=9 x Use the quadratic formula to solve the equations. Drag the answers on top of the problems to fill in the missing words. \square \square x=1±4310x=\frac{-1 \pm \sqrt{43}}{10} And started to 4x2x5=04 x^{2}-x-5=0 \square missing words. x=3±19\quad x=-3 \pm \sqrt{19} \square x=5,x=1/3x=-5, x=1 / 3 paraded \square x=9±978x=\frac{9 \pm \sqrt{97}}{-8} big \qquad \qquad like \qquad \square x=1,x=5/4x=-1, x=5 / 4 think

See Solution

Problem 20986

If f(x)={3x2 if 3x4x34 if 4<x5f(x)=\left\{\begin{array}{ll}3 x-2 & \text { if }-3 \leq x \leq 4 \\ x^{3}-4 & \text { if } 4<x \leq 5\end{array}\right., find: (a) f(0)f(0), (b) f(1)f(1), (c) f(4)f(4), and (d) f(5)f(5).

See Solution

Problem 20987

There are 200 students in the 7th grade class at Brookside Middle School. Of these students, 12%12 \% play volleyball and 15%15 \% play baseball. Four students play on both teams. What is the probability that a student plays either volleyball or baseball? A. 27%27 \% B. 30%30 \% C. 22%22 \% D. 25%25 \% SUBMIT

See Solution

Problem 20988

Melissa has a bag that contains 6 red marbles, 8 yellow marbles, and 18 blue marbles. If she chooses one marble from the bag, what is the probability that the marble is not blue? A. 916\frac{9}{16} B. 716\frac{7}{16} C. 79\frac{7}{9} D. 29\frac{2}{9}

See Solution

Problem 20989

Question 16, 1.6-26 points Points: 0 of 1 Save
One maid can clean the house in 4 hours. Another maid can do the job in 6 hours. How long will it take them to do the job working together? A. 12hr\frac{1}{2} \mathrm{hr} B. 110hr\frac{1}{10} \mathrm{hr} C. 124hr\frac{1}{24} \mathrm{hr} D. 125hr\frac{12}{5} \mathrm{hr}

See Solution

Problem 20990

Negative marking: 25 A coin of radius 5 cm is randomly dropped on a square floor full of square shaped tiles of side 20 cm each. What is the probability that the coin will land completely with in a tile? In other words the coin should not cross the edge of any tile.

See Solution

Problem 20991

Evaluate the definite integral. 12(e3u1(u+2)2)du\int_{1}^{2}\left(e^{3 u}-\frac{1}{(u+2)^{2}}\right) d u

See Solution

Problem 20992

The local high school is hosting an ice cream social for new students. They record the ice cream choices of the students throughout the event.
What is the probability that a male student chooses chocolate ice cream? \begin{tabular}{|c|c|c|c|c|} \hline & Vanilla & Strawberry & Chocolate & Total \\ \hline Male & 6 & 4 & 13 & 23 \\ \hline Female & 8 & 9 & 4 & 21 \\ \hline Total & 14 & 13 & 17 & 44 \\ \hline \end{tabular} A. 1344\frac{13}{44} B. 1317\frac{13}{17} C. 1023\frac{10}{23} D. 1323\frac{13}{23}

See Solution

Problem 20993

Peaches come in large and small cylindrical cans. The larger can has a radius and height that are both four times longer than the radius and height of the smaller can. If the volume of the smaller can is 32.16in332.16 \mathrm{in}^{3}, what is the volume of the larger can? A. 128.64in3128.64 \mathrm{in}^{3} B. 257.28in3257.28 \mathrm{in}^{3} C. 385.92in3385.92 \mathrm{in}^{3} D. 2058.24in32058.24 \mathrm{in}^{3} SUBMIT

See Solution

Problem 20994

Question
Evaluate the following integral using the Fundamental Theorem of Calculus. 5π/25π/2(cosx4)dx5π/25π/2(cosx4)dx=\begin{array}{l} \int_{-5 \pi / 2}^{5 \pi / 2}(\cos x-4) d x \\ \int_{-5 \pi / 2}^{5 \pi / 2}(\cos x-4) d x=\square \end{array} \square (Type an exact answer.)

See Solution

Problem 20995

Name:
Ai \qquad \qquad -
Writing Equations of Lines \qquad Exit Ticket 1) 13 marks] AA line passes through the points (3,2)(3,2) and (5,1)(5,-1).
Find the equation of this line in the form y=mx+by=m x+b. 2) 13 marks/ Find the equation of the line with gradient 23\frac{2}{3} that passes through the point (2,1)(-2,-1) in the form ax+by+d=0a x+b y+d=0.

See Solution

Problem 20996

، ، ص ص الكل زرج معا يلي: ................................................................... (1- • ) ب • ................................................................... (o- ، r), ،

See Solution

Problem 20997

4. [-/0.32 Points]
DETAILS MY NOTES SCOLALG7 4.4.014. 0/100 Submissions
Use the Laws of Logarithms to evaluate the expression. 13log5(125)-\frac{1}{3} \log _{5}(125) \square Need Helo?

See Solution

Problem 20998

Calculate c. log(72)\log (72) d. log(121)\log (121)

See Solution

Problem 20999

27. A star-connected load consists of three identical coils each of resistance 30Ω30 \Omega and inductance 127.3 mH . If the line current is 5,08 A5,08 \mathrm{~A}, calculate the line voltage if the supply frequency is 50 Hz .
Ans. 440V.
28. Three identical coils each of resistance 30Ω30 \Omega and inductance 127,3mH127,3 \mathrm{mH} are connected in delta to a 440 V , 50 Hz , 3-phase supply. Determine (a) the phase current, and (b) the line current.

Ans. a) 8,8 A; b) 15,24 A15,24 \mathrm{~A}

See Solution

Problem 21000

Use the quadratic formula to solve. Express your answer in simplest form. 4w2+20w+25=04 w^{2}+20 w+25=0

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord