Math  /  Calculus

Question7. ddx[x2(x3+7)]\frac{d}{d x}\left[x^{2}\left(x^{3}+7\right)\right]
8. ddx(2x3)2\frac{d}{d x}(2 x-3)^{2}
9. ddx[x5+6x4+5x3x2]\frac{d}{d x}\left[\frac{x^{5}+6 x^{4}+5 x^{3}}{x^{2}}\right]
10. ddx[(3x4+7)(x35x)]\frac{d}{d x}\left[\left(3 x^{4}+7\right)\left(x^{3}-5 x\right)\right]
11. ddx[5x+63x7]\frac{d}{d x}\left[\frac{5 x+6}{3 x-7}\right]
12. ddx[(7x+4)(x2+8)]\frac{d}{d x}\left[(7 x+4)\left(x^{2}+8\right)\right]

Studdy Solution
Differentiate (7x+4)(x2+8) (7x + 4)(x^2 + 8) using the product rule:
Let u=7x+4 u = 7x + 4 and v=x2+8 v = x^2 + 8 .
Calculate u u' and v v' :
u=ddx(7x+4)=7 u' = \frac{d}{dx}(7x + 4) = 7 v=ddx(x2+8)=2x v' = \frac{d}{dx}(x^2 + 8) = 2x
Apply the product rule:
ddx[(7x+4)(x2+8)]=(7)(x2+8)+(7x+4)(2x) \frac{d}{dx}[(7x + 4)(x^2 + 8)] = (7)(x^2 + 8) + (7x + 4)(2x)
Simplify:
=7x2+56+14x2+8x = 7x^2 + 56 + 14x^2 + 8x =21x2+8x+56 = 21x^2 + 8x + 56
The derivatives are:
1. 5x4+14x 5x^4 + 14x
2. 8x12 8x - 12
3. 3x2+12x+5 3x^2 + 12x + 5
4. 21x675x4+21x235 21x^6 - 75x^4 + 21x^2 - 35
5. 53(3x7)2 \frac{-53}{(3x - 7)^2}
6. 21x2+8x+56 21x^2 + 8x + 56

View Full Solution - Free
Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord