Math  /  Trigonometry

Question4. Solve the equation sin(8x)=sin(7x)cos(x)\sin (8 x)=\sin (7 x) \cos (x) for x(0,π)x \in(0, \pi).
ANS:

Studdy Solution
Znajdź rozwiązania w przedziale x(0,π)x \in (0, \pi):
Dla cos(7x)=0\cos(7x) = 0:
x=π14,3π14,5π14,9π14,11π14,13π14x = \frac{\pi}{14}, \frac{3\pi}{14}, \frac{5\pi}{14}, \frac{9\pi}{14}, \frac{11\pi}{14}, \frac{13\pi}{14}
Dla sin(x)=0\sin(x) = 0:
x=πx = \pi
Rozwiązania w przedziale to:
x=π14,3π14,5π14,9π14,11π14,13π14x = \frac{\pi}{14}, \frac{3\pi}{14}, \frac{5\pi}{14}, \frac{9\pi}{14}, \frac{11\pi}{14}, \frac{13\pi}{14}
Rozwiązania to:
x=π14,3π14,5π14,9π14,11π14,13π14 x = \frac{\pi}{14}, \frac{3\pi}{14}, \frac{5\pi}{14}, \frac{9\pi}{14}, \frac{11\pi}{14}, \frac{13\pi}{14}

View Full Solution - Free
Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord