Math / CalculusQuestion8. Calculate the value of the following limit: limn→∞n4+n2−n4−5n2+n\lim _{n \rightarrow \infty} \sqrt{n^{4}+n^{2}}-\sqrt{n^{4}-5 n^{2}+n}n→∞limn4+n2−n4−5n2+nANS:Studdy SolutionTeraz, gdy n→∞ n \to \infty n→∞, wyrażenia z 1n \frac{1}{n} n1, 1n2 \frac{1}{n^2} n21, i 1n3 \frac{1}{n^3} n31 zanikają:limn→∞6+01+0+1−0+0=61+1=62=3 \lim_{n \to \infty} \frac{6 + 0}{\sqrt{1 + 0} + \sqrt{1 - 0 + 0}} = \frac{6}{1 + 1} = \frac{6}{2} = 3 n→∞lim1+0+1−0+06+0=1+16=26=3 Wartość granicy to:3 \boxed{3} 3View Full Solution - FreeWas this helpful?