1. Let
f(x)=x2cosx1,x=0
(a) Use a graphing calculator to sketch the graph of y=f(x).
(b) Show that
−x2≤x2cosx1≤x2
holds for x=0.
(c) Use your result in (b) and the sandwich theorem to show that
x→0limx2cosx1=0
Which statement proves △DEF≅△ABC? a. AB=DE, BC=EF b. ∠D≅∠A, ∠B≅∠E, ∠C≅∠F c. Rigid motions map A to D, AB to DE, ∠B to ∠E d. Rigid motions map AB to DE, BC to EF, AC to DF.
Question 10 (1 point)
The radian measure of an angle is defined as the length of the arc that subtends the angle divided by the radius of the circle.
True
False
5. Given the expression 2cot(x)−2cot(x)cos2(x),
a. Use technology to graph the expression [3 marks]
b. Determine an equivalent trigonometric expression [2 marks]
c. Then prove that your expression is equal to the given expression. [ 3 marks]
Problem Solving
11) A sector of a circle of radius 28 cm has perimeter Pcm and area Acm2. Given that A=4P, find the value of P.
12) The percentage error for sinθ for a given positive value of θ is 1%. Show that 100θ=101sinθ. Answers
Submit Question Question 2
0/1 pt
5
99
Details ANOVA is a statistical procedure that compares two or more treatment conditions for differences in variance.
True
False Question Help:
Written Example Post to forum
Submit Question
2. Flächeninhalt Die Funktion f(x)=(x−1)⋅ex(s. Bild oben) beschreibt den Verlauf eines Flusses, der von zwei Straßen überbrückt wird, die längs der Koordinatenachsen laufen. (1 LE = 1 km ) Die beiden Straßen und der Fluss schließen im 4. Quadranten ein Grundstück A ein, welches für 80€ pro m2 zum Kauf angeboten wird.
a) Zeigen Sie, dass F(x)=(x−2)⋅ex eine Stammfunktion von f ist.
Unit 4: Trigonometric Functions Activity 8: Trigonometric Identities Assignment
Prove each of the following trigonometric identities. 1. sinxsin2x+cosxcos2x=cosx 2. cotx=sinxsin(2π−x)+cos2xcotx 3. 2csc2x=secxcscx
In triangles PQR and UVW, angles Q and V each have measure 75∘,PQ=9, and UV=27. Which additional piece of information is sufficient to prove that triangle PQR is similar to triangle UVW ?
Richiesta 3 (5 punti)
Dimostrare la seguente formula per calcolare l'area di un rombo:
A=l2sin(α)
dove l è la misura di un suo lato e α è l'ampiezza di un suo angolo interno. Suggerimento: utilizzare la seguente formula di duplicazione:
sin(2⋅θ)=2⋅sin(θ)⋅cos(θ)
oom
DeltaMath
All Bookma: Math
tnment \#3
at 10:00 PM
ruence, Flowchart Proof (Level
(Level 1)
(Level 2)
(Level 1)
uence Criteria Given: AB≅AC and ∠BAD≅∠CAD.
Prove: ∠DBC≅∠DCB.
Note: quadrilateral properties are not permitted in this proof.
rcice 2 :
Dans cet exercice toutes les récurrences devront être faites sans considérer qu'elles sont évidentes ; Soit (un)n≥0 la suite de nombres réels définie par u0∈]1,2] et par la relation de récurrence
un+1=4(un)2+43
Exercice 5:
Soit (un)n 1. Montrer que: ∀n∈N,un>1. 2. Montrer que: ∀n∈N,un≤2. 3. Montrer que la suite est monotone. En déduire que la suite est convergente. 4. Déterminer la limite de la suite (un)n≥0. Exercice 3 :
Soient u0,a et b trois réels. On considère la suite (un)n≥0 de nombres réels définie par u0 et la relation de récurrence:
un+1=aun+bun 1. Comment appelle-t-on la suite (un)n≥0 lorsque a=1 ? Lorsque que b=0 et a=1 ? 2. Exprimer un dans les deux cas particulier de la question 1 . 3. Dans le cas général, calculer u1,u2 et u3 en fonction de u0,a et b. 4. Démontrer par récurrence que le terme général de la suite est donné par:
un=anu0+bk=1∑nan−k,n∈N∗
1. Let the function
f(z)=u(x,y)+iv(x,y)
and it satisfies the Cauchy-Riemann conditions:
∂x∂u(x,y)=∂y∂v(x,y)∂y∂u(x,y)=−∂x∂v(x,y)
then f(z) is said to be analytical and v(x,y) is said to be harmonic conjugate of u(x,y). It is said to be harmonic if
∂x2∂2u(x,y)+∂y2∂2u(x,y)=0∂x2∂2v(x,y)+∂y2∂2v(x,y)=0 Show that the following u(x,y) are harmonic and find its harmonic conjugate
(a) u(x,y)=2x(1−y)
(b) u(x,y)=sinh(x)sin(y)
2. Let z=reiΘ, then log(z)=ln(r)+i(Θ+2nπ). The principle value of log(z) is obtained by setting n to zero and is written as log(z)=ln(r)+iΘ Find the following:
(a) log(i)
(b) Show that for any two nonzero complex numbers z1 and z2,
log(z1z2)=log(z1)+log(z2)+2NπiN=−1,0,1
In einem Waldstuick wird der derzeitige Halzbestand auf 4000 Festmeter geschatat. Der Holzzuwachs beträgt voraussichtlich in den nächsten 50 Jahren Jahrlich etwa 2\% des Bestands. Modellieren Sie die zeitliche Lntvicklung des Holzbestands als Exponentialfunktion der Form H:t↦b⋅at(H(t) in Festmetern, t in Jahreri). Zeigen Sie, dass die Funktion Hzut↦b⋅ekt mit k=ln(a)urn− geformt werden kann. Weiche der beiden Darstellungstormen ist zur Bestimmung der Wachstumsgeschwindigkeit
Create a new conditional statement using the Law of Syllogism from these true statements: 1. If a figure is a rhombus, then it is a parallelogram. 2. If a figure is a parallelogram, then it has two pairs of parallel sides.
Which coordinates for points A′ and B′ show that lines AB and A′B′ are perpendicular? 1. A′:(p,m) and B′:(z,w) 2. A′:(p,m) and B′:(z,−w) 3. A′:(p,−m) and B′:(z,w) 4. A′:(p,−m) and B′:(z,−w)
Здесь всюоду A,B,…, это какие-то непустые подмножества на прямой R.
(1) Используя лишь определение компактности доказите, что
(a) прямая R не компактна,
A square matrix A is idempotent if A2=A.
Let V be the vector space of all 2×2 matrices with real entries. Let H be the set of all 2×2 idempotent matrices with real entries. Is H a subspace of the vector space V ? 1. Does H contain the zero vector of V ?
choose 2. Is H closed under addition? If it is, enter CLOSED. If it is not, enter two matrices in H whose sum is not in H, using a comma separated list and syntax such as [[1,2],[3,4]],[[5,6],[7,8]] for the answer [1324],[5768]. (Hint: to show that H is not closed under addition, it is sufficient to find two idempotent matrices A and B such that (A+B)2=(A+B).)
□ 3. Is H closed under scalar multiplication? If it is, enter CLOSED. If it is not, enter a scalar in R and a matrix in H whose product is not in H, using a comma separated list and syntax such as 2,[[3,4],[5,6]] for the answer 2,[3546]. (Hint: to show that H is not closed under scalar multiplication, it is sufficient to find a real number r and an idempotent matrix A such that (rA)2=(rA).)
□ 4. Is H a subspace of the vector space V ? You should be able to justify your answer by writing a complete, coherent, and detailed proof based on your answers to parts 1-3.
choose
Verify the product law for differentiation, (AB)′=A′B+AB′ where A(t)=[3tt33t−1t1] and B(t)=[1−t2t21+t3t3]. To calculate (AB)′, first calculate AB.
AB=□
Now take the derivative of AB to find (AB)′.
(AB)′=□
To calculate A′B+AB′, first calculate A′.
A′=□
Now find A′B.
A′B=□
Now find B′.
B′=□□
Now calculate AB′.
AB′=□□
Finally, find A′B+ABB′.
A′B+AB′=□
The figure shows the healthy weight region for various heights for people ages 35 and older. If x represents height, in inches, and y represents weight, in pounds, the healthy weight region can be modeled by the system of linear inequalities below. Using this information, show that point A is a solution of the system of inequalities that describes healthy weight for this age group.
{5.2x−y≥1784.1x−y≤142 Healthy Weight Region for Men and Women, Ages 35 and Older Substitute the x - and y -coordinates of point A for x and y in the first inequality.
□≥178
(Type an integer or a decimal.)
View an example
Get more help -
Final check
Subspaces 1. Show that the sets consisting of vectors of the following form are subspaces of R2 by showing that they are closed under addition and under scalar multiplication.
(a) (a,3a)
8. Consider the following homogeneous system of linear equations in four variables. For convenience, the general solution is given. Show that the set of solutions forms a subspace of R4.
x1+x2−3x3+5x4x2−x3+3x4x1+2x2−4x3+8x4=0=0=0 General solution is (2r−2s,r−3s,r,s).
10. (a) Show that the vectors (1,0,0),(0,1,0),(0,0,1) span R3 and that they are also linearly independent.
(b) Show that the vectors (1,0,0),(0,1,0),(0,0,1), (0,1,1) span R3. Demonstrate that it is not an efficient spanning set by showing that an arbitrary vector in R3 can be expressed in more than one way as a linear combination of these vectors. We can think of (0,1,1) as being a redundant vector.
(c) Show that {(1,0,0),(0,1,0),(0,0,1),(0,1,1)} is linearly dependent and is thus not a basis for R2. A basis consists of a set of vectors, all of which are needed.
Hilfsmittelteil (erlaubte Hilfsmittel: graphikfähiger Taschenrechner, Formelsammlung)
Aufgabe 4:
(37 Punkte)
Die Abbildung zeigt den Würfel ABCDEFGH mit G(5∣5∣5) und H(0∣5∣5) in einem kartesischen Koordinatensystem.
Die Punkte I(5|0|1), J(2|5|0), K(0∣5∣2) und L(1∣0∣5) liegen jeweils auf einer Kante des Würfels. 8
多
(2P)
-
A
-
e) Zeigen Sie, dass das Viereck IJKL ein Trapez ist, in dem zwei Seiten gleich lang sind. Weisen Sie nach, dass die Seite L des Trapezes doppelt so lang ist wie die Seite JK.
(7P)
f) Berechnen Sie die Größe eines Innenwinkels des Trapezes IJKL.
(6P)
(4P) Der Punkt P (4|0|2) liegt auf der Strecke IL. Die Strecke JP steht dabei senkrecht zur Strecke IL.
g) Berechnen Sie den Flächeninhalt des Trapezes IJKL.
(5P)
h) Gegeben ist die Ebene S:x=v⋅⎝⎛−1−55⎠⎞+w⋅⎝⎛−551⎠⎞ mit v,w∈R. Der Punkt K liegt in einer Ebene T, die parallel zu S ist.
Untersuchen Sie, ob auch der Punkt L in T liegt.
(5P)
b Arầtati că numărul a53−25 se divide cu 100 .
20 a Efectuati: 1(2k)2;
in (2k+1)2.
b Deduceți că un număr natural care dă restul 3 la impărțirea cu 4 nu este pătrat perfect. c Arătați că numărul 111151 nu este pătrat perfect.
iin(3k+2)2
11. True or false? Explain.
a. If a counting number is divisible by 9 , it must be divisible by 3 .
b. If a counting number is divisible by 3 and 11 , it must be divisible by 33 .
11. True or false? Explain.
a. If a counting number is divisible by 6 and 8 , it must be divisible by 48 .
b. If a counting number is divisible by 4 , it must be divisible by 8 .
The number of bacteria N, in a culture is modeled by the exponential growth model, N(t)=300e0.025t, where t represents time in hours. The growth rate of the population of this bacterium is represented by 2.5% per hour.
True
False
Les questions sont indépendantes .
1 Montrer que : ∀z∈C,∣ez∣≤e∣z∣, étudier le cas d'égalité.
2 Si Z est un complexe non nul , montrer que les images des solutions complexes de l'équation ez=Z sont des points alignés. 3 Montrer que si a,b,c sont des complexes de module 1 alors ∣ab+bc+ca∣=∣a+b+c∣.
4 Soit (n,m)∈N∗2. Montrer que Um⊂Un⇔m divise n
5 Si n est impaire, montrer que Un=Vn où Vm={z2/z∈Un}6a,b sont des complexes distincts de module 1 et z∈C. On pose u=b−az+abzˉ−a−b. Montrer que u2 est un réel négatif .
7 Résoudre le système {∣z−1∣=∣z−2∣Arg(z+i)≡Arg(z−1)[2π]. Interpréter la solution géométriquement.
(II) A lever such as that shown in Fig. 7-20 can be used to lift objects we might not otherwise be able to lift. Show that the ratio of output force, FO, to input force, FI, is related to the lengths ℓI and ℓO from the pivot by FO/FI=ℓI/ℓO. Ignore friction and the mass of the lever, and assume the work output equals the work input.
(a) FIGURE 7-20
A lever. Problem 11.
(b)
8. Let f:[a,b]→R be continuous on [a,b] and differenchable in (a,b). Show that if limx→af′(x)=A, then f′(a) exists and equals A. [Hint: Use the definition of f′(a) and the Mean Value Theorem.] 9. Let f:R→R be defined by f(x):=2x4+x4sin(1/x) for x=0 and f(0):=0. Show that f has an absolute minimum at x=0, but that its derivative has both positive and negative values in every neighborhood of 0 .
The ratios of corresponding sides in the two triangles are equal. What other information is needed to prove that △FGE∼△IJH by the SAS similarity theorem?
∠F≅∠J∠I≅∠F∠E≅∠H∠G≅∠I