Prove

Problem 801

Prove that 2cos(x)12cos2(x)7cos(x)+3=1cosx3\frac{2 \cos (x)-1}{2 \cos ^{2}(x)-7 \cos (x)+3}=\frac{1}{\cos x-3} is an identity.

See Solution

Problem 802

If : x=132,y=32\boldsymbol{x}=\frac{1}{\sqrt{3}-\sqrt{2}} \quad, \quad y=\sqrt{3}-\sqrt{2} Prove that X,yX, y are conjugate, then find the value of : (x+y)2(x+y)^{2}

See Solution

Problem 803

Show that point A(63,140)A(63,140) is a solution for the inequalities 5.2xy1805.2x - y \geq 180 and 4.2xy1414.2x - y \leq 141.

See Solution

Problem 804

Verify if point A (63, 140) satisfies these inequalities: 5.2x - y ≥ 180 and 4.2x - y ≤ 141.

See Solution

Problem 805

Find the gradient of the output f(x)f(\mathbf{x}) with respect to W(2)\mathbf{W}^{(2)} for the neural network defined as f(x)=σ(σ(xW(1))W(2))f(\mathbf{x})=\sigma\left(\sigma\left(\mathbf{x} \cdot \mathbf{W}^{(1)}\right) \cdot \mathbf{W}^{(2)}\right). Optional: Calculate the gradient with respect to W(1)\mathbf{W}^{(1)}.

See Solution

Problem 806

Prove PnP_{n}: k=1n1k(k+1)=nn+1\sum_{k=1}^{n} \frac{1}{k(k+1)}=\frac{n}{n+1} for all positive integers nn. What’s the first induction step?

See Solution

Problem 807

\text{Show that the series } \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \text{ converges.}

See Solution

Problem 808

3. Two triangles have two pairs of corresponding sides that are congruent. What else must be true for the triangles to be congruent by the HL Theorem? (A) The included angles must be right angles. B. They have one pair of congruent angles.
C Both riangles must be isosceles.
78. There are right angles adjacent to just one pair of congruen

See Solution

Problem 809

(b) limx+,x>01x=0\lim _{x \rightarrow+\infty, x>0} \frac{1}{x}=0.

See Solution

Problem 810

6\sqrt{\circ} 6 gokazamb limx(1+1x)x=e\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=e

See Solution

Problem 811

( 20 علمة) السؤال الثاني: 1- 1- برهن باسنتغام جدول الصو اب أن 2- برهن أن (20 علامة) السوال الثالث:

See Solution

Problem 812

( 20 علامة) r=1n2r1=n2\sum_{r=1}^{n} 2 r-1=n^{2}
السؤال الثالث:
برهن باستخدام الاستقراء الرياضي أن:

See Solution

Problem 813

ـ بين لماذا تكون المصفوفة القابلة للإنعكاس (Invertible) يكون لها محدد غير مفري.

See Solution

Problem 814

Q2) Let f:XYf: X \rightarrow Y be a function and BYB \subseteq Y, prove that f1(YB)=Xf1(B).f^{-1}(Y-B)=X-f^{-1}(B) .

See Solution

Problem 815

Prove that a positive integer nn is even if it can be expressed as 2m2m for some integer mm using induction.

See Solution

Problem 816

Д13.1. Докажите, что можно так занумеровать вершины связного неориентированного графа на nn вершинах числами от 1 до nn, что для каждого 1kn1 \leqslant k \leqslant n связен подграф, индуцированный множеством вершин с номерами от 1 до kk. Множество SS вершин графа G=(V,E)G=(V, E) индуцирует подграф с множеством вершин SS, рёбрами которого являются все рёбра из EE с обоими концами в SS.

See Solution

Problem 817

Д13.4. Пусть KK - множество конечных подмножеств натуральных чисел, упорядоченных по включению (если a,bKa, b \in K, то ababa \leqslant b \Leftrightarrow a \subseteq b ); MM - множество положительных натуральных чисел, свободных от квадратов (которые не делятся на p2p^{2} ни для какого простого pp ), упорядоченных по отношению делимости (если a,bMa, b \in M, то abba \leqslant b \Leftrightarrow b делится без остатка на aa ). Докажите, что эти два порядка изоморфны.

See Solution

Problem 818

fonksiyon için δ\delta, sadece ϵ\epsilon sayısına bağlıdır yani x=tx=t den bağımsız olmaktadır. 3.11 Örnek f:(0,1]R,f(x)=1xf:(0,1] \longrightarrow \mathbb{R}, f(x)=\frac{1}{x} fonksiyonunun sürekli ancak düzgün sürekli olmadığım gösteriniz.

See Solution

Problem 819

log(xy)=logxlogy\log \left(\frac{x}{y}\right)=\frac{\log x}{\log y} True False

See Solution

Problem 820

Prove the Linear Pairs Theorem: If ABC\angle ABC and CBD\angle CBD are a linear pair, then they are supplementary.

See Solution

Problem 821

Prove by induction that for positive integers nn:
1+2(12)+3(12)2++n(12)n1=4n+22n11 + 2(\frac{1}{2}) + 3(\frac{1}{2})^2 + \ldots + n(\frac{1}{2})^{n-1} = 4 - \frac{n+2}{2^{n-1}}.

See Solution

Problem 822

यदि a+b+c=0a+b+c=0, तब a3+b3+c3abca^{3}+b^{3}+c^{3}-a b c का मान क्या है? (a) 3abc3 a b c (b) 2abc2 a b c (c) 4abc4 a b c (d) abca b c

See Solution

Problem 823

MATh140 Second Firstsem-2024-2025, (161745)(-4) mentie
Question 8 of 18 A matrix that is both sympetric and upper triangular must be a diagonal matrix. True Falle

See Solution

Problem 824

1. Prove that 2+332+3 \sqrt{3} is an irrational number. It is given that 3\sqrt{ } 3 is an irrational number.

See Solution

Problem 825

12sin2xsinx+cosx+2sinx2cosx2=cosx\frac{1-2 \sin ^{2} x}{\sin x+\cos x}+2 \sin \frac{x}{2} \cos \frac{x}{2}=\cos x

See Solution

Problem 826

b) sin2x=2sinxcosx\sin 2 x=2 \sin x \cos x c) tanx=sinxcosx\tan x=\frac{\sin x}{\cos x} d) all of these - The height of the tip of one blade of a wind turbine above the ground, h(t)h(t), can be modelled by h(t)=18cos(πt+π4)+2h(t)=18 \cos \left(\pi t+\frac{\pi}{4}\right)+2 where tt is the time passed in seconds. Whic, time interval describes a period when the bl tip is at least 30 m above the ground? a) 5.24t7.335.24 \leq t \leq 7.33 (c) 1.37t21.37 \leq t \leq 2. ) 0.42t1.080.42 \leq t \leq 1.08 d) 0.08t10.08 \leq t \leq 1.
Iify cosπ5cosπ6sinπ5sinπ6\cos \frac{\pi}{5} \cos \frac{\pi}{6}-\sin \frac{\pi}{5} \sin \frac{\pi}{6}

See Solution

Problem 827

Question: Convergence in Probability Let X1,X2,X_{1}, X_{2}, \ldots be a sequence of independent and identically distributed (i.i.d.) random variables, where each XiX_{i} has the following probability distribution: P(Xi=0)=12,P(Xi=1)=12.P\left(X_{i}=0\right)=\frac{1}{2}, \quad P\left(X_{i}=1\right)=\frac{1}{2} . 1
Define the sample mean Xˉn\bar{X}_{n} as: Xˉn=1ni=1nXi.\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i} .
We want to analyze the behavior of Xˉn\bar{X}_{n} as nn \rightarrow \infty. (a) Show that E[Xi]=12E\left[X_{i}\right]=\frac{1}{2} and Var(Xi)=14\operatorname{Var}\left(X_{i}\right)=\frac{1}{4}. (b) Using the weak law of large numbers (WLLN), show that XˉnundefinedP12\bar{X}_{n} \xrightarrow{P} \frac{1}{2} as nn \rightarrow \infty. That is, prove that Xˉn\bar{X}_{n} converges to 12\frac{1}{2} in probability. (c) For a sequence Y1,Y2,Y_{1}, Y_{2}, \ldots of independent random variables where P(Yi=P\left(Y_{i}=\right. 1) =11i=1-\frac{1}{i} and P(Yi=0)=1iP\left(Y_{i}=0\right)=\frac{1}{i}, determine whether YnY_{n} converges in probability to 1 as nn \rightarrow \infty. Justify your answer using the definition of convergence in probability.

See Solution

Problem 828

CCA2 > Chapter 2 > Lesson 2.1.2 > Problem 2-24
Consider the equations y=3(x1)25y=3(x-1)^{2}-5 and y=3x26x2y=3 x^{2}-6 x-2. a. Verify that they are equivalent by creating a table or graph for each equation. \square \checkmark Hint (a): Here are a couple of points on the table. Make sure you get these points and continue both of your tables for at leas \begin{tabular}{c|c|} \hlinexx & yy \\ \hline-2 & 22 \\ \hline-1 & \\ \hline 0 & \\ \hline 1 & -5 \\ \hline 2 & \\ \hline \end{tabular}

See Solution

Problem 829

sin2x+sin2y=2sin(x+y)cos(xy)\sin 2x + \sin 2y = 2 \sin (x+y) \cos (x-y) Prove this using only the double angle formula, without using the sum-to-product identities.

See Solution

Problem 830

f) cos4θsin4θ=12sin2θ\cos ^{4} \theta-\sin ^{4} \theta=1-2 \sin ^{2} \theta

See Solution

Problem 831

Determine if triangle BCDB C D and triangle EFGE F G are or are not similar, and, if they are, state how you know. (Note that figures are NOT necessarily drawn to scale.)
Answer
The triangles \square similar.

See Solution

Problem 832

Given: ABCDA B C D is a parallelogram. Diagonals AC,BD\overline{\mathrm{AC}}, \overline{\mathrm{BD}} intersect at E . Prove: AECE\overline{\mathrm{AE}} \cong \overline{\mathrm{CE}} and BEDE\overline{\mathrm{BE}} \cong \overline{\mathrm{DE}} Statements
1. ABCD is a parallelogram
2. ABCD\overline{\mathrm{AB}} \| \overline{\mathrm{CD}}
3. BAE\angle \mathrm{BAE} and DCE\angle \mathrm{DCE} are alt. interior angles

Reasons
1. given
2. def. of parallelogram
3. def. of alt. interior angles

CorrectIAssemble the next statement. Intro

See Solution

Problem 833

Is it true or false that every irrational number is a natural number? Choose: True or False.

See Solution

Problem 834

Is the statement true or false? Justify: Does the augmented matrix [a1a2a3b]\left[\begin{array}{llll}a_{1} & a_{2} & a_{3} & b\end{array}\right] imply bb is in Span {a1,a2,a3}\{a_{1}, a_{2}, a_{3}\}?

See Solution

Problem 835

Is the statement true or false? The linear system from [a1a2a3b]\left[\begin{array}{llll}a_{1} & a_{2} & a_{3} & b\end{array}\right] has a solution if bb is in Span {a1,a2,a3}\{a_{1}, a_{2}, a_{3}\}. Choose A, B, C, or D.

See Solution

Problem 836

Prove or disprove that there are no positive integers a,b,ca, b, c and integer n>2n>2 such that an+bn=cna^{n}+b^{n}=c^{n}.

See Solution

Problem 837

50. Given: ACEC,BCDC\overline{A C} \cong \overline{E C}, \overline{B C} \cong \overline{D C}
Prove: ABCEDC\triangle A B C \cong \triangle E D C \begin{tabular}{l|l} \multicolumn{1}{c|}{ Statements } & \multicolumn{1}{c}{ Reasons } \\ \hline 1. ACEC\overline{A C} \cong \overline{E C} & 1. Given \\
2. BCDC\overline{B C} \cong \overline{D C} & 2. GNen \\
3. ACBECD\angle A C B \cong \angle E C D & 3. \\ 4.ABCEDC4 . \triangle A B C \cong \triangle E D C & 4. \end{tabular}

See Solution

Problem 838

mx=0um \angle x=0 u
Prove: m7=120m \angle 7=120^{\circ}
Statements Reasons mnm|\mid n m2=60m \angle 2=60^{\circ} 82\angle 8 \approx \angle 2 m8=m2m \angle 8=m \angle 2 2 m(860)m(8-60) Angle Congruence Postulate Substitution Property of Equality m7+m8=180m \angle 7+m \angle 8=180^{\circ} Linear Pair Postulate

See Solution

Problem 839

se the given information to prove that PQRTSR\triangle P Q R \cong \triangle T S R.
Given: QRSR\overline{Q R} \cong \overline{S R} Send To Proof PQRTSR\angle P Q R \cong \angle T S R Send To Proof
Prove: PQRTSR\triangle P Q R \cong \triangle T S R Send To Proof Statement Reason
1 \square Reason?
Validate

See Solution

Problem 840

13ddx[cscx]=cotxcscx13 \frac{d}{d x}[\csc x]=-\cot x \csc x

See Solution

Problem 841

Name: \qquad Section 2 - B. 2 4) [IC] (/2) Zhen claims that in exponential functions, they act like a parabola, so a vertical stretch by a factor of aa will result in the same graph as a horizontal compression by aa. Use the functions f(x)=3(2)xf(x)=3(2)^{x} and g(x)=(2)3xg(x)=(2)^{3 x} to either back up Zhen's claim or reject his claim. Use of the grid provided is optional.

See Solution

Problem 842

3. Provet sin4±sin2πsin2x=cos3xcosx\frac{\sin 4 \pm-\sin 2 \pi}{\sin 2 x}=\frac{\cos 3 x}{\cos x}

See Solution

Problem 843

Question 3 8 pts
Given: TVWVWX\angle T V W \cong \angle V W X, and VWTXVW\angle V W T \cong \angle X V W Prove: TVWXWV\triangle T V W \cong \triangle X W V
1. TVWVWX\angle T V W \cong \angle V W X
1. Given
2. VWTXVW\angle V W T \cong \angle X V W
2. Given
3. [Select]
3. [Select]
4. [Select]
4. [Select]

See Solution

Problem 844

Prove that the repeating decimal 0.9990.999\ldots is equal to 1.

See Solution

Problem 845

Draw Venn diagrams for sets AA and BB to show that A=(AB)(ABˉ)A = (A \cap B) \cup (A \cap \bar{B}).

See Solution

Problem 846

Complete the proof that FGH\triangle F G H \cong FHG\triangle F H G.

See Solution

Problem 847

III. Given: BEED\overline{B E} \perp \overline{E D} and EBBA\overline{E B} \perp \overline{B A}, and CC is the midpoint of BE\overline{B E} Prove: ABCDEC\triangle A B C \cong \triangle D E C \begin{tabular}{|l|l|l|} \hline & & \\ \hline Corresponding, Congruent Parts: & Corresponding, Congruent Parts: & Corresponding, Congruent Parts: \\ \hline Explanation: & & \\ \hline \end{tabular}

See Solution

Problem 848

false: (5 points) form of ypy_{p} for y3y+2y=xexy^{\prime \prime \prime}-3 y^{\prime}+2 y=x e^{x} is (Ax3+Bx2)ex\left(\mathrm{Ax}^{3}+B x^{2}\right) e^{x} the roots of the indicial equation are 0.3,1.7-0.3,1.7 then the D.E. has two nearly independent solutions W(f,g,h)=sintW(f, g, h)=\sin t then the functions f,g,hf, g, h are linearly dependent er bound for the radius of convergence for the series 1 of (1x3)y+4xy+y=0,x0=3\left(1-\mathrm{x}^{3}\right) y^{\prime \prime}+4 x y^{\prime}+y=0 \quad, \mathrm{x}_{0}=3 \quad is 2 =1=1 is a R.S.P for (x1)2y+3y+(x1)y=0(x-1)^{2} y^{\prime \prime}+3 y^{\prime}+(x-1) y=0

See Solution

Problem 849

ue or false: (5 points) - The form of ypy_{p} for y3y+2y=xexy^{\prime \prime \prime}-3 y^{\prime}+2 y=x e^{x} is (Ax3+Bx2)ex\left(\mathrm{Ax}^{3}+B x^{2}\right) e^{x} - If the roots of the indicial equation are 0.3,1.7-0.3,1.7 then the D.E. has two linearly independent solutions - If W(f,g,h)=sintW(f, g, h)=\sin t then the functions f,g,hf, g, h are linearly dependent lower bound for the radius of convergence for the series lution of (1x3)y+4xy+y=0,x0=3\left(1-\mathrm{x}^{3}\right) y^{\prime \prime}+4 x y^{\prime}+y=0 \quad, \mathrm{x}_{0}=3 \quad is 2 - x=1\mathrm{x}=1 is a R.S.P for (x1)2y+3y+(x1)y=0(x-1)^{2} y^{\prime \prime}+3 y^{\prime}+(x-1) y=0

See Solution

Problem 850

Q1) True or false: (5 points)
1- The form of ypy_{p} for y3y+2y=xexy^{\prime \prime \prime}-3 y^{\prime}+2 y=x e^{x} is (Ax3+Bx2)ex\left(\mathrm{Ax}^{3}+B x^{2}\right) e^{x} 2- If the roots of the indicial equation are 0.3,1.7-0.3,1.7 then the D.E. has two linearly independent solutions
3- If W(f,g,h)=sint\mathrm{W}(\mathrm{f}, \mathrm{g}, \mathrm{h})=\sin \mathrm{t} then the functions f,g,h\mathrm{f}, \mathrm{g}, \mathrm{h} are linearly dependent 4- The lower bound for the radius of convergence for the series solution of (1x3)y+4xy+y=0,x0=3\left(1-\mathrm{x}^{3}\right) y^{\prime \prime}+4 x y^{\prime}+y=0 \quad, \mathrm{x}_{0}=3 \quad is 2
5- x=1\quad \mathrm{x}=1 is a R.S.P for (x1)2y+3y+(x1)y=0(x-1)^{2} y^{\prime \prime}+3 y^{\prime}+(x-1) y=0

See Solution

Problem 851

II. Given the triangles below, determine what additional piece of information is needed to prove ABCCED\triangle A B C \cong \triangle C E D by AAS? state and mark on diagram

See Solution

Problem 852

Which of the following explains how AEB\triangle A E B could be proven similar to DEC\triangle D E C using the AAA A similarity postulate? AEBCED\angle A E B \cong \angle C E D because vertical angles are congruent; reflect CED\triangle C E D across segment FGF G, then translate point DD to point AA to confirm EABEDC\angle E A B \cong \angle E D C. AEBCED\angle A E B \approx \angle C E D because vertical angles are congruent; rotate CED180\triangle C E D 180^{\circ} around point EE, then dilate CED\triangle C E D to confirm EBEC\overline{E B} \approx \overline{E C}. AEBDEC\angle A E B \cong \angle D E C because vertical angles are congruent; rotate CED180\triangle C E D 180^{\circ} around point EE, then translate point DD to point AA to confirm EAB=EDC\angle E A B=\angle E D C. AEBDEC\angle A E B \cong \angle D E C because vertical angles are congruent; reflect CED\triangle C E D across segment FGF G, then dilate CED\triangle C E D to confirm EBED\overline{E B} \approx \overline{E D}

See Solution

Problem 853

Q1) True or false: (5 points) 1- The form of ypy_{p} for y3y+2y=xey^{\prime \prime \prime}-3 y^{\prime}+2 y=x e^{\prime} is (Ax3+Bx2)ex\left(\mathrm{Ax}^{3}+B x^{2}\right) e^{x}

See Solution

Problem 854

Let (Y1,Y2)(Y_1, Y_2) have joint density fY1,Y2(y1,y2)f_{Y_1, Y_2}(y_1, y_2). Define U1=Y1+Y2U_1 = Y_1 + Y_2, U2=Y2U_2 = Y_2.
a) Show fU1,U2(u1,u2)=fY1,Y2(u1u2,u2)f_{U_1, U_2}(u_1, u_2) = f_{Y_1, Y_2}(u_1 - u_2, u_2).
b) Find fU1(u1)=fY1,Y2(u1u2,u2)du2f_{U_1}(u_1) = \int_{-\infty}^{\infty} f_{Y_1, Y_2}(u_1 - u_2, u_2) du_2.
c) If Y1Y_1 and Y2Y_2 are independent, show fU1(u1)=fY1(u1u2)fY2(u2)du2f_{U_1}(u_1) = \int_{-\infty}^{\infty} f_{Y_1}(u_1 - u_2) f_{Y_2}(u_2) du_2.

See Solution

Problem 855

Prove the trigonometric equation: θsin(1n)x1x2=tan1(x)\theta \sin \left(\frac{1}{n}\right) \frac{x}{\sqrt{1-x^{2}}} = \tan^{-1}(x).

See Solution

Problem 856

Show that multiplication is commutative by proving qc=cqq \cdot c = c \cdot q for variables 'q' and 'c'.

See Solution

Problem 857

Verify that the equation is an identity. cscαcotα=secα\frac{\csc \alpha}{\cot \alpha}=\sec \alpha
To verify the identity, start with the more complicated side and transform it to look like the other side. Choose the correct transformations and transform the expression at each step. cscαcotα=\frac{\csc \alpha}{\cot \alpha}=\frac{\square}{\square}
What transforniation is made in the numerator? \square What transformation is made in the denominator? \square

See Solution

Problem 858

Détermine if the two functions are inverses of each othe f(x)=3x3g(x)=x33\begin{array}{l} f(x)=\sqrt[3]{3-x} \\ g(x)=x^{3}-3 \end{array} No because f(g(x))=x3+63f(g(x))=\sqrt[3]{-x^{3}+6} and g(f(x))=xg(f(x))=-x No because f(g(x))=xf(g(x))=-x and g(f(x))=xg(f(x))=-x Yes because f(g(x))=xf(g(x))=-x and g(f(x))=xg(f(x))=-x Yes because f(g(x))=x3+63f(g(x))=\sqrt[3]{-x^{3}+6} and g(f(x))=xg(f(x))=-x

See Solution

Problem 859

Find a matrix for the linear transformation T(x1,x2,x3)=(x18x2+5x3,x27x3)T(x_{1}, x_{2}, x_{3})=\left(x_{1}-8 x_{2}+5 x_{3}, x_{2}-7 x_{3}\right). A=A=

See Solution

Problem 860

Find a matrix for the linear transformation T(x1,x2,x3)=(x14x2+7x3,x26x3)T(x_{1}, x_{2}, x_{3})=\left(x_{1}-4 x_{2}+7 x_{3}, x_{2}-6 x_{3}\right). A=A=\square

See Solution

Problem 861

Exercice n9\mathrm{n}^{\circ} 9 : Soit a]0,1a \in] 0,1. Montrer à l'aide des accroissements finis que pour tout nNn \in \mathbb{N}^{*}, a(n+1)1a(n+1)anaan1a.\frac{a}{(n+1)^{1-a}} \leqslant(n+1)^{a}-n^{a} \leqslant \frac{a}{n^{1-a}} .

See Solution

Problem 862

Question: Sufficient Estimator for Poisson Distribution
Let X1,X2,,XnX_{1}, X_{2}, \ldots, X_{n} be a random sample from a { }^{* *} Poisson distribution** with an unknown parameter λ\lambda, where λ>0\lambda>0. The probability mass function (PMF) of each XiX_{i} is given by: f(x;λ)=λxeλx!,x=0,1,2,f(x ; \lambda)=\frac{\lambda^{x} e^{-\lambda}}{x!}, \quad x=0,1,2, \ldots (a) Write the likelihood function L(λ)L(\lambda) based on the random sample X1,X2,,XnX_{1}, X_{2}, \ldots, X_{n}. (b) Use the { }^{* *} Factorization Theorem** to show that the statistic T=i=1nXiT=\sum_{i=1}^{n} X_{i} is a { }^{* *} sufficient statistic { }^{* *} for λ\lambda. (c) Find the { }^{* *} maximum likelihood estimator (MLE) { }^{* *} of λ\lambda. (d) Show that the statistic T=i=1nXiT=\sum_{i=1}^{n} X_{i} is a { }^{* *} complete and sufficient** statistic for λ\lambda. Justify your answer.

See Solution

Problem 863

Дана пирамида EABCD. Её основание - параллелограмм, диагонали которого пересекаются в точке OO. Определи, справедливо ли равенство: 1.2ODundefinedADundefined+ACundefined=BEundefined1.2 \overrightarrow{O D}-\overrightarrow{A D}+\overrightarrow{A C}=\overrightarrow{B E} \square
2. ODundefined+OEundefinedCEundefined+0,5CAundefined=OBundefined\overrightarrow{O D}+\overrightarrow{O E}-\overrightarrow{C E}+0,5 \overrightarrow{C A}=\overrightarrow{O B}. \square
3. AEundefinedOEundefined+0,5BDundefined=DAundefined\overrightarrow{A E}-\overrightarrow{O E}+0,5 \overrightarrow{B D}=\overrightarrow{D A}. \square

See Solution

Problem 864

Soit {Un}\left\{U_{n}\right\} et (Vn)\left(V_{n}\right) deux suites définies par: Un=2n+4n+32U_{n}=\frac{2^{n}+4 n+3}{2} et Vn=2n4n+32V_{n}=\frac{2^{n}-4 n+3}{2} On pose T1=Un+VnT_{1}=U_{n}+V_{n} et T2=UnVnT_{2}=U_{n}-V_{n} 1) Montrer que T1T_{1} est géométrique et que T2T_{2} est arithmétique ? 2) En déduire S1S_{1} et S2S_{2} en fonction de nn tels que: S1=K=0nUKS_{1}=\sum_{K=0}^{n} \boldsymbol{U}_{K} et S2=K=0nVKS_{2}=\sum_{K=0}^{n} V_{K}

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord