In Exercises 15-20, write a rule for g and then graph each function. Describe the graph of g as a transformation of the graph of f. Example 3 15. f(x)=x4+1,g(x)=f(x+2) 16. f(x)=x6−3x3+2,g(x)=f(x)−3
The graphs of y=x+1 intersects the graph of y=5cos(x−3π) at the point A in the first quadrant. By using Newton-Raphson method, find the coordinates of A correct to four decimal places.
Exercice 1(6pts) 1. Soit f l'application de l'ensemble {1,2,3,4} dans lui-même définie par:
⎩⎨⎧f(1)=3f(2)=0f(3)=1f(4)=4
a) Déterminer f−1(A) lorsque A={2},A={1,4},A={3}.
b) f est-elle injective ?surjective?bijective? 2. Soit f l'application de R dans R définie par f(x)=x2
a) Déterminer f(A) lorsque A={2},A={−2}. Que peut-on conclur?
b) Déterminer f−1(A) lorsque A={4},A=[1,4].
f(x)={−2x+321x−2si x<2si x≥2 1. f est-elle continue sur R? 2. f est dérivable sur R? Exercice 2 (8 pts) : Partie A : Étude d'une fonction auxiliaire
Soit g la fonction définie sur R par g(x)=(x+2)ex−4−2 1. Déterminer la limite de g en +∞. 2. Démontrer que la limite de g en −∞ vaut −2. 3. On admet que la fonction g est dérivable sur R et on note g′ sa dérivée.
Calculer g′(x) pour tout réel x puis dresser le tableau de variations de g. 4. Démontrer que l'équation g(x)=0 admet une unique solution α sur R. 5. En déduire le signe de la fonction g sur R. 6. À l'aide de la calculatrice, donner un encadrement d'amplitude 10−3 de α. Partie B : Étude de la fonction
Soit f la fonction définie sur R par f(x)=x2−x2ex−4 1. Résoudre l'équation f(x)=0 sur R. 2. On admet que la fonction f est dérivable sur R et on note f′ sa fonction dérivée.
Montrer que, pour tout réel x, f′(x)=−xg(x) où la fonction g est celle définie à la partie A. 3. Étudier les variations de la fonction f sur R. 4. Démontrer que le maximum de la fonction f sur [0;+∞[ est égal à α+2α3.
Finding the x and y-intercepts of the
polynomial functions y=2x4+8x3+4x2−8x−6 +1+6−1−6+2+3−2−3+3+2−3−2 Constant = +1,−1,+2,−2,+3,−3,+6,−6
leading coop = +1,−1(+2)y=2x4+8x3+4x2−8x−6
Für beliebige x,y∈R definieren wir x♡y=x+y2, also zum Beispiel 5♡4=21. (a) Berechnen Sie 6♡2. (b) Gilt a♡1≥1♡a für alle a∈R? Gilt a♡1<1♡a für alle a∈R? (c) Wie viele Paare (x,y) mit x♡y=10 und x,y∈N0 gibt es?
Bemerkung: N0={0,1,2,3,4,…}.
Determining Concavity In Exercises 5-16, determine the open intervals on which the graph of the function is concave upward or concave downward. 5. f(x)=x2−4x+8 6. g(x)=3x2−x3 7. f(x)=x4−3x3 8. h(x)=x5−5x+2 9. f(x)=x2+1224 10. f(x)=3x2+12x2
144y2−x2=1 Graph the hyperbola. Choose the correct graph below. The foci is/are at the point(s) □.
(Type an ordered pair. Type an exact answer, using radicals as needed. Use a comma to separate answers as needed.) The equation of the asymptote with the positive slope is □. The equation of the asymptote with the negative slope is □.
(Simplify your answers. Use integers or fractions for any numbers in the equation.)
1. Show that the proposition (p⟹q)⟹¬(p∧¬q) is a tautology. 2. If ¬[¬r⟹¬(p∧q)] is true, then find the truth value of
[(p⟹r)∨q]⟺(¬p∧r) 3. Use mathematical induction prove that
a) For all n≥1, 1+4+7+⋯+(3n−2)=2n(3n−1)
b) For any positive integer n, n3+2n is divisible by 3 4. If 6 is even then 2 does not divide 7. Either 5 is not prime or 2 divide 7. But 5 is
prime. Therefore 6 is not even. Investigate the validity by formal proof. 5. Discuss all the necessary steps and sketch the graph of x2−3x−4x3−9x 6. Find all the square roots of −2+23i 7. Find the number a and k so that (x−1) is a factor of the polynomial
f(x)=x4−2ax3+ax2−x+k and f(−1)=10, then find all zeros of
f(x)
Question 3, 11.2.37
21 points
0
Points: 0 of 1
Save Use a calculator to estimate the given limit.
x→−∞limx3x2/3−x5/3 What is the limit? Select the correct choice below and, if necessary fill in the answer box to complete your choice.
A. limx→−∞x3x2/3−x5/3=□
B. The limit does not exist and is not ∞ or −∞.
Answer the following questions for the graph of y=5logx.
A. What is the x -intercept? Write in point form. Write DNE if the point does not exist.
□
B. What is the y-intercept? Write in point form. Write DNE if the point does not exist.
□
C. Draw the graph. There is a large margin for error for the graph. You just need the general shape of the graph.
A quadratic function has the complex roots 3±2i. What is the equation of the function in
standard form? The value of a is given as 1 for this quadratic.
f(x)=x2+bx+cb=c=
Note: Your answers should be integers.
Which of the following statements is FALSE?
Area under the curve y=f(x) can be equal to 0 .
∫abf(x)dx could be positive or negative if f(x)>0 between x=a and x=b.
∫010f(x)dx could be positive, negative, or zero depending on what the function is.
The area between the x-axis and a function is always non-negative.
Timed Problem
Score: 0/3
Current Time: 9.5
Which equation is equivalent to the given equation?
3x=−3x2+60
Answer
3x2+3x−60=03x2−3x+60=03x2−3x−60=03x2+3x+60=0
Keyboard shortcuts
Watch Video
Stop
art 2. Solve the following equations using algebra and write your answer as an ordered pair. Show all work and box your final answer. 7. x+7y=25;2x+5y=14 8. 4x−5z=28;x+3z=7 Part 3. Complete the following operations without a calculator. Show all work and box your final answer. 9. 35−93= ? 10. 4312÷5= ? Part 4. Factor the following completely. Show all work and box your final answer. 11. μ3+2μ2+μ 12. 6μ2+μ−15
16I3−dId(4I4−3C2I2)=dId(2IC4+4I+2020) ( apply the product rule as required and find the derivative with respect to I of the other terms )
NOTE: Enter dC/dI for dIdC or for C′ Step 2: Identify what the problem is asking
Step 3: Find the appropriate formula
Step 4: Draw a conclusion
16 / Final (April 25, 2024)
- [9 points] The Taylor series centered at x=1 for a function T(x) is given by:
T(x)=n=0∑∞(−5)n⋅(2n)!(n!)2(x−1)4n+3
a. [6 points] Find the radius of convergence of the Taylor series above. Show your work. Do not attempt to find the interval of convergence.
page 1
x
- 9 points] The Taylor series ces
T(x)=n=0∑∞(−5)n⋅(2n)!(n!)2(x−1)4n+3 is given by:
-
(−5)22+2((n+1)εk)2(−5)(2n+2))1(x - 1)4n+7(x2)α(x−1)4n+3(25)2⋅(2n)1−5(2n+1)(n+1)(2n+2)(2n+1)(2n)2n!(n+2n+2(n+1)′)2(n+1)26+2=82+2=42+2+6−604⋅
1
b. [3 points] Compute T(123)(1). Show your work. You do not need to simplify your answer.
Answer: T(123)(1)=
Exercise (2)
Write each of the following sets in roster notation (extension):
A={x/x∈N, where 0≤x2≤28}.
B={x/x is prime and 4≤2x<15}.
C={x/x∈Z, where 1≤x≤3}.
D={x/x∈Z, where x is a solution of the equation (x2−5)(2x+3)=0}.
E={x/x∈Q, where x is a solution of the equation (x2−5)(x+3)=0}.
F={x/x∈N,where x is a power of 2 and less than 40}.
G={x/x∈N, where x is a multiple of 3 and 32x≤2}.
2. Determine the phase shift and the vertical displacement with respect to y=cosx for each function. Sketch a graph of each function.
a) y=cos(x−30∘)+12
b) y=cos(x−3π)
c) y=cos(x+65π)+16
d) y=4cos(x+15∘)+3
e) y=4cos(x−π)+4
f) y=3cos(2x−6π)+7
Find the following limit or state that it does not exist.
x→2lim5 Select the correct choice below and, if necessary, fill in the answer box to complete your choice.
A. limx→25=□ (Simplify your answer.)
B. The limit does not exist.
Consider a U.S. economy consisting of 4 sectors: (1) Textiles, (2) Apparel, (3) Farms, and (4) Wholesale Trade. The following (I−A)−1 matrix was computed from an input-output table for this economy:
(I−A)−1=⎣⎡1.21970.01340.08750.00500.17231.0700.01230.00070.000601.2047−0.00340.00380.00110.00221.0413⎦⎤ What is the interpretation of the 3,2 -entry of (I−A)−1 ?
a. It takes $0.0123 worth of goods from the Farms sector to produce $1 worth of Apparel sector goods.
b. The Farms sector must increase production by $0.0123 in order to meet a $1 increase in demand in the Apparel sector.
c. The Apparel sector must increase production by $0 in order to meet a $1 increase in demand in the Farms sector.
d. It takes $0 worth of goods from the Apparel sector to produce $1 worth of the Farms sector goods.
Use the properties of logarithms to expand the following expression as much as possible. Simplify any numerical expressions that can be evaluated without a calculator. log9(81x2) Answer 2 Points
f(x)=c−x What do all members of the family of linear functions f(x)=c−x have in common? All members of the family of linear functions f(x)=c−x have graphs that are lines with slope \_\_\_\_\_\_\_\_\_\_\_\_ and y-intercept \_\_\_\_\_\_\_\_\_\_\_\_. Sketch several members of the family. c=2c=1c=0c=−1c=−2 c=2c=1c=0c=−1c=−2 c=2c=1c=0c=−1c=−2 c=−2c=−1c=0c=1c=2
Solve the following radical equation.
4z+17+2=z+1
Answer
2 Points
Write your answer(s) beginning with the first answer box. If applicable, the second answer box may be left blank.
z=
Consider the following function.
f(x)=4x2−3 Step 1 of 2: Graph the original function by indicating how the more basic function has been shifted, reflected, stretched, or compressed.
f(x)=x2ex−5 Find the x-values of all points where the function has any relative extrema. Find the value(s) of any relative extrema. Select the correct choice below and, if necessary, fill in any answer boxes within your choice. A. There are no relative minima. The function has a relative maximum of at x=.
(Use a comma to separate answers as needed. Type exact answers in terms of e.) B. The function has a relative maximum of at x= and a relative minimum of at x=.
(Use a comma to separate answers as needed. Type exact answers in terms of e.) C. There are no relative maxima. The function has a relative minimum of at x=.
(Use a comma to separate answers as needed. Type exact answers in terms of e.) D. There are no relative extrema.
Use the long division method to find the result when 2x3+19x2+5x−27 is divided by x+9. If there is a remainder, express the result in the form q(x)+b(x)r(x).
Consider the following rational function.
f(x)=x−5−2
Step 1 of 3: Find equations for the vertical asymptotes, if any, for the function.
Answer (opens in new window) 2 Points
Separate multiple equations with a comma.
Selecting a button will replace the entered answer value. The value of the button is used instead of the value in the
none
Use Cramer's rule to solve the system
{12x−14y=624x+13y=3. If there is a solution, write your answer in the format (x,y).
Answer 2 Points
Selecting an option will display any text boxes needed to complete your answer.
No Solution
One Solution
Infinitely Many Solutions
Step 4
(b) g(t)=sin(et−3)
To find the domain of g(t)=sin(et−3), we examine the domains of the exponential and sine functions. Remembering that ex exists for all values of x, the domain
s=et−3 is what? (Enter your answer using interval notation.)
(−∞,∞)
Step 5
Next, we examine the sine. Since sin(x) exists for all values of x, then the domain of y=sin(s) is what? (Enter your answer using interval notation.)
V(x)=x3+3x2−11x−33
Step 1 of 2: Use the Rational Zero Theorem to list all of the potential rational zeros.
Answer 2 Points
Enter only the positive values. Separate multiple answers with commas.
±{
\}
The function f(x)=5x3−7x+2 has at least one rational root. Use the rational root theorem to find that root, then proceed to find all complex roots. (Note: roots may be integ rational, irrational, and/or complex.) Answer
16 of 18 Solve the following equation algebraically: x+4=3x−12 Separate your answers with commas. Do not use spaces. Write leftmost (most negative) answers first. If there is no solution write "DNE" in the answer box. Write your answers as fractions if possible, not decimals. Write the value for x below:
7t−14−16r+9c+(−14c)8−8c−8c−4b−12b10n−15−5n+6+2c3x+(−17)+21f+3x−(−21f)−19m+5−(−m)+c−7cy−14+30c−2y+16c10+(−4g)+10−13x−2g+5x20j+20j−16m−16m+16−25d+2s−7+15s−20d9m−14−6m+4r+12rm+15c+(−3m)−4 simplifies to 8mc30x+9+9m+14x−3m simplifies to 34x+9+6m6+4m−17g+6m+3g simplifies to 6+10m−14g17+6y−10+m+7m simplifies to 27+6y+8m−j+10s−j+12−8s simplifies to −2j+2s+12
```latex
\text{Berechnen Sie die folgenden Wahrscheinlichkeiten für eine binomialverteilte Zufallsgröße } X \text{ mit den Parametern:} \begin{itemize}
\item \text{A) } n = 50 \text{ und } p = 0,05
\item \text{B) } n = 100 \text{ und } p = 0,03
\end{itemize} \begin{align*}
&P(X = 4) \\
&P(X < 4) \\
&P(X > 3) \\
&P(1 < X < 5) \\
&P(X < 1 \text{ oder } X < 5)
\end{align*}
```