Math Statement

Problem 23401

Evaluate b2yb - 2y for b=3b = -3 and y=3y = 3.

See Solution

Problem 23402

Calculate 634+2456 \frac{3}{4}+2 \frac{4}{5}.

See Solution

Problem 23403

Use the distributive property: (7×3)(7×2)=7×(7 \times 3)-(7 \times 2)=7 \times __.

See Solution

Problem 23404

Find the derivative of the implicit function: y2+siny+x+y+ysinx+ysiny+cos(y2+1)+siny+x2+4y=cosxy^2 + \sin y + x + y + y \sin x + y \sin y + \cos(y^2 + 1) + \sin y + x^2 + 4y = \cos x and 3xy2+cosy2=2x3+53xy^2 + \cos y^2 = 2x^3 + 5 and tan(5y)ysinx+3xy2=9\tan(5y) - y \sin x + 3xy^2 = 9.

See Solution

Problem 23405

Solve for tt using the square root property: 2t245=192 t^{2}-45=-19. Find t=t=.

See Solution

Problem 23406

Complete the square for the equation p2+14p33=10p^{2}+14 p-33=10. Write it as (pa)2=b(p-a)^{2}=b and find p=p=.

See Solution

Problem 23407

Solve the equation 4m23m2=04 m^{2}-3 m-2=0 using the quadratic formula and list solutions in simplest radical form.

See Solution

Problem 23408

Solve: 1x+68=x12\sqrt{-1 x+68}=x-12. Find x=x= (Separate answers with commas; use integers or reduced fractions. If none, enter DNE.)

See Solution

Problem 23409

Solve for xx: x3/5=8x^{3/5} = 8

See Solution

Problem 23410

Solve a2=15a56a^{2}=15 a-56. Find a=a=. If multiple solutions, separate with a comma.

See Solution

Problem 23411

Solve the equation 3r312r=2r2+83 r^{3}-12 r=-2 r^{2}+8 for real values of rr. Provide answers as integers or simplified fractions, separated by commas.

See Solution

Problem 23412

Find the six trigonometric functions for the angle 750750^{\circ}. Simplify sin750=\sin 750^{\circ}=.

See Solution

Problem 23413

Solve for xx: 12<14(x+3)<1512 < -14(x+3) < 15. Type DNE if no solution exists. Provide your answer in interval notation.

See Solution

Problem 23414

Find the intersection point of the lines defined by y=3xy=3x and y=4x49y=-4x-49.

See Solution

Problem 23415

Solve the inequality: -6 ≤ x + 12. Provide the solution in interval notation.

See Solution

Problem 23416

Solve the quadratic p2+14p33=10p^{2}+14 p-33=10 by completing the square. Give the equation as (pa)2=b(p-a)^{2}=b and list solutions.

See Solution

Problem 23417

Find the six trigonometric function values for the angle 420420^{\circ}. Calculate sin420=\sin 420^{\circ}=.

See Solution

Problem 23418

Find the derivative f(x)f^{\prime}(x) of the function f(x)=9x2f(x)=9x-2.

See Solution

Problem 23419

Find the six trigonometric functions for the angle 420420^{\circ}.

See Solution

Problem 23420

Calculate 8×101+6.9×1038 \times 10^{-1} + 6.9 \times 10^{3}.

See Solution

Problem 23421

Solve the equation 4m23m2=04 m^{2}-3 m-2=0 using the quadratic formula. Provide solutions in simplest radical form.

See Solution

Problem 23422

Calculate 2.74×1016.53×1042.74 \times 10^{-1} - 6.53 \times 10^{-4}.

See Solution

Problem 23423

Find f(64)f(64) given the function f(x)=9xf(x)=9 \sqrt{x}. What is f(64)=?f(64)=?

See Solution

Problem 23424

Find the six trigonometric functions for the angle 330-330^{\circ}. Calculate sin(330)=\sin \left(-330^{\circ}\right)= (simplify and rationalize).

See Solution

Problem 23425

Calculate 5.9×1020.078×1035.9 \times 10^{-2} - 0.078 \times 10^{3}.

See Solution

Problem 23426

Calculate 6.36×1035.8×1016.36 \times 10^{3} - 5.8 \times 10^{-1}.

See Solution

Problem 23427

Find the six trigonometric function values for the angle 1650-1650^{\circ}. Calculate sin(1650)\sin \left(-1650^{\circ}\right).

See Solution

Problem 23428

Find f(10)f(10) for the function f(x)=5x+x2+10f(x)=5x+x^{2}+10. What is f(10)f(10)?

See Solution

Problem 23429

Calculate the product of 1.08×1031.08 \times 10^{-3} and 9.3×1039.3 \times 10^{-3}.

See Solution

Problem 23430

Find f(5.75)f(5.75) using the function f(x)=5.98xf(x)=\frac{5.98}{x}. Provide the answer as a decimal or whole number.

See Solution

Problem 23431

Convert 86twelve 86_{\text {twelve }} to decimal. What is the decimal value?

See Solution

Problem 23432

Convert the number 86twelve86_{\text{twelve}} to decimal.

See Solution

Problem 23433

Find when the water ride height y=3sin(π2(x+3)2)y=3 \sin \left(\frac{\pi}{2}(x+3)-2\right) is 1 foot below the start in 0<x<50<x<5.

See Solution

Problem 23434

Find the six trigonometric functions for the angle 2025-2025^{\circ}. Simplify sin(2025)=\sin(-2025^{\circ})=.

See Solution

Problem 23435

Find the exact value of cot(855)\cot (-855)^{\circ}. Simplify your answer, including radicals, using integers or fractions.

See Solution

Problem 23436

Find the exact value of sin1020\sin 1020^{\circ}. Simplify your answer with integers, fractions, or radicals.

See Solution

Problem 23437

Find f(34.58)f(34.58) using the rule f(x)=0.0738.58xf(x)=0.07 \sqrt{38.58-x}. What is f(34.58)f(34.58)?

See Solution

Problem 23438

Evaluate sin2240cos2270+tan245\sin ^{2} 240^{\circ}-\cos ^{2} 270^{\circ}+\tan ^{2} 45^{\circ} and simplify your answer.

See Solution

Problem 23439

Evaluate cos230+sec2150csc2210\cos ^{2} 30^{\circ}+\sec ^{2} 150^{\circ}-\csc ^{2} 210^{\circ} and simplify your answer.

See Solution

Problem 23440

Find all θ\theta in [0,360)[0^{\circ}, 360^{\circ}) such that sinθ=12\sin \theta=\frac{1}{2}. What are the values of θ\theta?

See Solution

Problem 23441

Solve the equation 2sin2θ+cosθ=1-2 \sin ^{2} \theta+\cos \theta=-1 for 0θ<2π0 \leq \theta<2 \pi.

See Solution

Problem 23442

Solve 2sin2θ+cosθ=1-2 \sin ^{2} \theta+\cos \theta=-1 for 0θ<2π0 \leq \theta<2 \pi. Options include π3,π\frac{\pi}{3}, \pi.

See Solution

Problem 23443

Find all values of θ\theta in [0,360)[0^{\circ}, 360^{\circ}) where cscθ=233\csc \theta=\frac{2 \sqrt{3}}{3}.

See Solution

Problem 23444

Find tanA\tan A in triangle ABCABC (right angle at CC) with sides a=6a=6 and b=7b=7. Provide exact answers.

See Solution

Problem 23445

Find the exact value of cscπ6\csc \frac{\pi}{6} without a calculator. Options: 2\sqrt{2}, 233\frac{2 \sqrt{3}}{3}, 2, 12\frac{1}{2}.

See Solution

Problem 23446

Find sinA\sin A for right triangle ABC\mathrm{ABC} with sides a=5a=5 and b=3b=3. Exact answers only.

See Solution

Problem 23447

Find the exact value of sec9π4\sec \frac{9 \pi}{4} using a coterminal angle without a calculator. Options: 22\frac{\sqrt{2}}{2}, 233\frac{2 \sqrt{3}}{3}, 2\sqrt{2}, 2.

See Solution

Problem 23448

Find the exact value of sec(π2θ)\sec \left(\frac{\pi}{2}-\theta\right) if tanθ=2\tan \theta=2. Choices: 5\sqrt{5}, 52\frac{\sqrt{5}}{2}, 2, 12\frac{1}{2}.

See Solution

Problem 23449

Solve for θ\theta in the equation 2sin(θ)=0.6512 \sin (\theta) = 0.651.

See Solution

Problem 23450

Find cosA\cos A for a right triangle with sides a=5a=5 and b=2b=2. Provide the exact answer with a rational denominator.

See Solution

Problem 23451

Find the product and simplify: (x+8)2(x+8)^{2}.

See Solution

Problem 23452

Convert 52.4852.4_{8} (octal) to decimal (base ten).

See Solution

Problem 23453

Calculate the value of 1sin230sin2601 - \sin^2 30^{\circ} - \sin^2 60^{\circ} without a calculator. Options: 132\frac{1-\sqrt{3}}{2}, 1, 0, 14\frac{1}{4}.

See Solution

Problem 23454

Find cotθ\cot \theta if cosθ=31010\cos \theta=\frac{3 \sqrt{10}}{10}.

See Solution

Problem 23455

Is the value of sin(π12)=232\sin \left(\frac{\pi}{12}\right) = \frac{\sqrt{2-\sqrt{3}}}{2} exact or approximate? Explain.

See Solution

Problem 23456

Calculate the value of tanπ6sinπ3\tan \frac{\pi}{6} - \sin \frac{\pi}{3} without a calculator.

See Solution

Problem 23457

Simplify the expression: (x2y3z4)23\sqrt[3]{\left(x^{2} y^{3} z^{4}\right)^{2}}

See Solution

Problem 23458

Solve for 0θ<3600^{\circ} \leq \theta < 360^{\circ} where cosθ=12\cos \theta = \frac{1}{2}. What are the values of θ\theta?

See Solution

Problem 23459

Calculate the value of tanπ6sinπ3\tan \frac{\pi}{6} - \sin \frac{\pi}{3} without a calculator.

See Solution

Problem 23460

Find the sum of the infinite geometric series with an=64(14)n1a_{n}=64\left(\frac{1}{4}\right)^{n-1}.

See Solution

Problem 23461

Find the exact value of cscθ\csc \theta given sinθ=14\sin \theta=\frac{1}{4} and cosθ=154\cos \theta=\frac{\sqrt{15}}{4}.

See Solution

Problem 23462

Find the value of cotA\cot A in triangle ABCABC where b=5b=5 and c=6c=6. Provide exact answers with rational denominators.

See Solution

Problem 23463

Find the length of side aa in triangle ABCABC with b=13.5b=13.5, c=8.9c=8.9, and A=29\angle A = 29^{\circ}.

See Solution

Problem 23464

Identify the conic section for the equation 9x2+4y2=369 x^{2}+4 y^{2}=36: Ellipse, Parabola, Circle, or Hyperbola?

See Solution

Problem 23465

Solve the system: 3x + 5y = -7 and 14x - 9y = 32. Choose from (2,1), (-2,1), (1,-2), (1,2).

See Solution

Problem 23466

Find the exact value of tanπ4\tan \frac{\pi}{4}. Options: 33\frac{\sqrt{3}}{3}, 1-1, 0, 1.

See Solution

Problem 23467

Find the exact value of tan(30π)\tan (30 \pi) using a coterminal angle. Options: -1, 0, 1, undefined.

See Solution

Problem 23468

Find cscB\csc B for a right triangle with sides a=5a=5 and b=6b=6. Provide exact answers with rational denominators.

See Solution

Problem 23469

Simplify the expression: 5r(r+s)2-5 r(r+s)^2

See Solution

Problem 23470

Find the exact value of sec10csc50-\frac{\sec 10^{\circ}}{\csc 50^{\circ}} using identities. Choices: 1-1, 11, 00, undefined.

See Solution

Problem 23471

Find the exact value of tan(690)\tan(-690^{\circ}) using a coterminal angle, without a calculator. Choices: 33\frac{\sqrt{3}}{3}, 3\sqrt{3}, 3-\sqrt{3}, 32\frac{\sqrt{3}}{2}.

See Solution

Problem 23472

Find the derivative f(x)f'(x) of the function f(x)=x25f(x) = x^2 - 5.

See Solution

Problem 23473

Simplify and factor 5(x2+65x+52)40+15-5\left(x^{2}+\frac{6}{5} x+\frac{5}{2}\right)-40+15.

See Solution

Problem 23474

Complete the square and find the vertex of the function s(x)=5x230x40s(x)=-5 x^{2}-30 x-40.

See Solution

Problem 23475

Given point (3,4)(-3,-4), find secθ\sec \theta. Options: 35-\frac{3}{5}, 53-\frac{5}{3}, 54\frac{5}{4}, 43\frac{4}{3}.

See Solution

Problem 23476

Find the exact value of sin5π3\sin \frac{5 \pi}{3} using the reference angle, without a calculator. Options: 12-\frac{1}{2}, 32\frac{\sqrt{3}}{2}, 1-1, 32-\frac{\sqrt{3}}{2}.

See Solution

Problem 23477

Find f(45)f(45^{\circ}) for f(θ)=sinθf(\theta)=\sin \theta. What is the value? Options: 22\frac{\sqrt{2}}{2}, 12\frac{1}{2}, 2\sqrt{2}, 22-\frac{\sqrt{2}}{2}.

See Solution

Problem 23478

Find secθ\sec \theta for the point P(3,1)P(-3,-1) on the circle x2+y2=r2x^{2}+y^{2}=r^{2}.

See Solution

Problem 23479

Find θ\theta in [0,90][0^{\circ}, 90^{\circ}] such that tanθ=0.75248493\tan \theta = 0.75248493. Calculate θ\theta \approx.

See Solution

Problem 23480

Find the domain of the function f(x)=17x4f(x)=\sqrt[4]{17-x}.

See Solution

Problem 23481

Find the domain of the function f(x)=1x2f(x)=\frac{1}{x-2}.

See Solution

Problem 23482

Is the statement true or false? Evaluate if 1+tan230.1=sec230.11+\tan^{2} 30.1^{\circ} = -\sec^{2} 30.1^{\circ}.

See Solution

Problem 23483

Find the domain of the function g(x)=8xx29g(x)=\frac{8 x}{x^{2}-9}.

See Solution

Problem 23484

Simplify the expression: 8y273\sqrt[3]{8 y^{27}}

See Solution

Problem 23485

Calculate: 85+64910+22532=\frac{8}{5} + \frac{6}{4} - \frac{9}{10} + \frac{2}{25} - \frac{3}{2} =

See Solution

Problem 23486

Find the vertex of the quadratic function 3x2+10x33 x^{2}+10 x-3.

See Solution

Problem 23487

Graph the function defined as: f(x)=3xf(x) = -3 - x for x1x \leq 1 and f(x)=3+2xf(x) = -3 + 2x for x>1x > 1.

See Solution

Problem 23488

Find the vertex of the quadratic function 2x22x42x^{2} - 2x - 4.

See Solution

Problem 23489

Find the derivative f(x)f^{\prime}(x) for the function f(x)=7x2+xf(x)=7 x^{2}+x.

See Solution

Problem 23490

Find the equation of the axis of symmetry for the function 2x22x42x^{2} - 2x - 4.

See Solution

Problem 23491

An employee's Medicare tax is given by a piecewise function. Find f(0)f(0), f(200)f(200), and f(400)f(400) for f(x)f(x).
f(x)={13.5x if 0x2002700+26.5(x200) if x>200 f(x)=\left\{\begin{array}{ll} 13.5 x & \text { if } 0 \leq x \leq 200 \\ 2700+26.5(x-200) & \text { if } x>200 \end{array}\right.

See Solution

Problem 23492

Calculate the Medicare tax function values for x=0x = 0, 200200, and 400400 using the piecewise function defined for 2022.

See Solution

Problem 23493

Determine the quadrant for angle θ\theta where sinθ>0\sin \theta > 0 and cosθ>0\cos \theta > 0.

See Solution

Problem 23494

Find the derivative R(t)R'(t) for R(t)=0.1t2R(t) = -0.1 t^{2} and calculate R(1)R'(1).

See Solution

Problem 23495

Realiza la operación de 5x3y(2x+3y4)5 x^{3} y(2 x+3 y-4).

See Solution

Problem 23496

Find the derivative of R(t)=0.1t2R(t)=-0.1 t^{2} and evaluate it at t=1t=1. What is R(1)R'(1)?

See Solution

Problem 23497

Find the reference angle for the angle 42π8-\frac{42 \pi}{8}.

See Solution

Problem 23498

Find the exact value of sec3π4\sec \frac{3 \pi}{4} using the reference angle, without a calculator.

See Solution

Problem 23499

Find the reference angle for 42π8-\frac{42 \pi}{8}. Options: π4\frac{\pi}{4}, π2\frac{\pi}{2}, π3\frac{\pi}{3}, π8\frac{\pi}{8}.

See Solution

Problem 23500

Find cotθ\cot \theta if cosθ=2129\cos \theta = \frac{21}{29} and 3π2<θ<2π\frac{3 \pi}{2} < \theta < 2 \pi.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord