Réflexion EXERCICE 1: CoTon L'entreprise CoTon produit du tissu en coton. Celui-ci est fabriqué en 1 mètre de large et pour une longueur x exprimée en kilomètre, x étant compris entre Oet10. Le coût total de production en euros de l'entreprise CoTon est donné en fonction de la longueur x par la formule :
C(x)=15x3−120x2+500x+750 Le graphique ci-contre donne la représentation graphique de la fonction C. Partie A: Étude du bénéfice
Si le marché offre un prix p en euros pour un kilomètre de ce tissu, alors la recette de l'entreprise CoTon pour la vente d'une quantité x est égal à R(x)=px. 1. Tracer sur le graphique la droite D1 d'équation : y=400x. Expliquer, au vu de ce tracé, pourquoi l'entreprise CoTon ne peut pas réaliser un bénéfice si le prix p du marché est égal à 400 euros. 2. Dans cette question on suppose que le prix du marché est égal à 680 euros. Tracer sur le graphique la droite D2 d'équation : y=680x. Déterminer graphiquement, avec la précision permise par le graphique pour quelles quantités produites et vendues, l'entreprise CoTon réalise un bénéfice si le prix p du marché est de 680 euros. 3. On considère la fonction B définie sur l'intervalle [0;10] par: B(x)=680x−C(x) Démontrer que pour tout x appartenant à l'intervalle [0;10], on a : B′(x)=−45x2+240x+180 4. Étudier les variations de la fonction B sur [0;10]. En déduire pour quelle quantité produite et vendue le bénéfice réalisé par l'entreprise CoTon est maximum. Donner la valeur de ce bénéfice. Partie B: Étude du coût moyen
On rappelle que le coût moyen de production CM mesure le coût par unité produite. On considère la fonction CM définie sur l'intervalle [0;10] par :
CM(x)=xC(x) 1. Démontrer que pour tout x appartenant à l'intervalle [0;10],
CM′(x)=x230(x−5)(x2+x+5) 2. Montrer que pour tout x∈[0;10] le signe de CM′(x) est le même que celui de " (x−5) " 3. Pour quelle quantité de tissu produite le coût moyen de production est-il minimum? Que valent dans ce cas le coût moyen de production et le coût total?
Find equations of the tangent lines to the curve
y2−xy−12=0
at the points (−1,3), and (−1,−4). The tangent line at (−1,3) is y=□
(Type your answer in slope-intercept form. Use integers or fractions for any numbers in the expression.)
```latex
Let F(x) be an antiderivative of f(x)=(x−1)(x−2) such that F(0)=2. Which of the following graphs if the most accurate graph of F(x) ? Circle your choice and explain your answer below. Option A Option B Option C Option D
```
A model helicopter takes off from a point O at time t=0s and moves vertically so that its height ycm, above O after time t seconds is given by
y=41t4−26t2+96t,0≤t≤4
a) Find
(i) dtdy
(ii) dt2d2y
b) Verify that y has a stationary value when t=2 and determine whether this stationary value is a maximum or a minimum value.
c) Find the rate of change of y with respect to t when t=1.
d) Determine whether the height of the helicopter is increasing or decreasing at the instant when t=3.
Kuta Software - Infinite Calculus
Slope at a Value
Date
Perio For each problem, find the slope of the function at the given value.
1) y=x2+6x+7 at x=−2
2) y=x3−3x2+5 at x=3
3) y=x3−6x2+9x−4 at x=2
4) y=−x3−6x2−9x+1 at x=−4
The function given by y=f(x) shows the value of $5000 invested at 6% interest compounded continuously, x years after the money was originally invested.
(Round your answers to the nearest cent.)
Value of $5000 with Continuous Compounding at 6% Part: 0/3 Part 1 of 3
(a) Find the average amount earned per year between the 5 th year and the 10 th year. The average amount earned between the Sth year and 10 th year is $ per year.
Question It is estimated that the population of a certain town changes at the rate of 3+t3/5 people per month. If the current population is 30,000 , what will the population be in 7 months? (Round your answer to the nearest whole number.)
Let A(t)=3000e0.03t be the balance in a savings account after t years. Complete parts (a) through ( f ) below.
(Kound to the nearest cent as needed.)
(d) What differential equation is satisfied by y=A(t) ? The differential equation that is satisfied by y=A(t) is A′(t)=0.03A(t).
(e) Use the results from parts (c) and (d) to determine how fast the balance is growing after 11 years. The balance is growing at approximately $□ per year after 11 years.
(Round to the nearest cent as needed.)
Evaluate each definite integral if it is known that
∫03f(x)dx=−5, and ∫03g(x)dx=3 Utilize properties of definite integrals to evaluate
∫03[2f(x)+3g(x)]dx
Let A(t)=3000e0.03t be the balance in a savings account after t years. Complete parts (a) through (f) below.
(e) Use the results from parts (c) and (d) to determine how fast the balance is growing after 11 years. The balance is growing at approximately $125.19 per year after 11 years.
(Round to the nearest cent as needed.)
(f) How large will the balance be when it is growing at the rate of $120 per year? The balance will be $□ when it is growing at the rate of $120 per year.
(Round to the nearest cent as needed.)
Question The marginal cost of production is found to be
C′(x)=1200−30x+x2
where x is the number of units produced. The fixed cost of production is $7500. The manufacturer sets the price per unit at $3000. Find the cost function.
Find the cost function C. Determine where the cost is a minimum.
(a) C′(x)=14x−2800
(b) C′(x)=20x−8000 Fixed cost =$4300
Fixed cost =$500 Provide your answer below:
Four thousand dollars is deposited into a savings account at 4.5% interest compounded continuously.
(a) What is the formula for A(t), the balance after t years?
(b) What differential equation is satisfied by A(t), the balance after t years?
(c) How much money will be in the account after 9 years?
(d) When will the balance reach $8000 ?
(e) How fast is the balance growing when it reaches $8000 ?
(b) A′(t)=0.045A
(c) $□ (Round to the nearest cent as needed.)
Question
Population Growth It is estimated that the population of a certain town changes at the rate of 2+t4/5 people per month. If the current population is 20,000 , what will the population be in 10 months? Provide your answer below: Population in 10 months = □
FEEDBACK
MORE INSTRUCTION
SUBMIT
An object has a constant acceleration of 2 ft per sec every second for a short time of 6 seconds, and then the acceleration decreases to 0 as shown in the graph. Complete parts a through c.
(a) Find ∫010a(t)dt. Include units.
∫010d(x)dt=8ft/sec per sec
(Simplify your answer.)
The marginal cost of oil production, in dollars per barrel, is represented by C′(x), where x is the number of barrels of oil produced. Report the units of ∫600C′(x)dx and interpret what the integral means. The units of ∫600640C′(x)dx are □
During a local high school foothall game, the quarterback for the home team attempts a deep pass to his wide recelver. The ball is launched from 6.25 feet with an initial velocity of 73 feet per second (f/s).
a) Write the equation modeling the projectile motion for the football and sketch the graph.
16. The acceleration due to gravity on Earth is 9.8m/s2. A ball is thrown upward at an initial velocity of 15m/s from a height of 1 m above the ground. Round answers to the nearest tenth.
a) Write an equation for the height of the ball.
b) What is the height of the ball after 1 s ?
c) After how many seconds does the ball land?
d) What is the maximum height of the
20.
ball? When does this occur?
e) Repeat parts a) to d) for a ball thrown on the Moon, where g=1.62m/s2.
f) Repeat parts a) to d) for a ball thrown on Jupiter, where g=23.1m/s2.
Encercler une primitive de la fonction f(x)=sec2x+x1.
(A) tanx+ln∣x∣−π
(D) tan2x−ln∣x∣+5
(B) tan2x+x22
(E) tan2x+2x2
(C) 2sec2xtanx−x21
(F) Aucune de ces réponses
Use properties of power series, substitution, and factoring of constants to find the first four nonzero terms of the Taylor series centered at 0 for the function given below. Use the Taylor series (1+x)−2=1−2x+3x2−4x3+⋯, for −1<x<1.
(1+4x)−2 The first term is □
Página Principal
Área personal
Mis cursos Una persona que camina por un camino recto tiene su velocidad en millas por hora en el tiempo t dado por la función v(t)=0.25t3−1.5t2+3t+0.25, para tiempos en el intervalo 0≤t≤2. El gráfico de esta función también se propo el diagrama a continuación.
Tiempo rest Determine el valor de U=C1+C2+C3+C4 evaluando la función y=v(t) en los valores elegidos adecuadamente y observando el ancho de cada rectángulo.
Seleccione una:
The total cost (in dollars) of producing x coffee machines is
C(x)=1800+50x−0.8x2
(A) Find the exact cost of producing the 21st machine. Exact cost of 21st machine =□
(B) Use marginal cost to approximate the cost of producing the 21 st machine. Approx. cost of 21st machine =□
The total profit (in dollars) from the sale of x charcoal grills is
P(x)=50x−0.5x2−245
(A) Find the average profit per grill if 40 grills are produced. Ave. profit = □
Find the marginal average profit at a production level of 40 grills.
(B) Marginal avergge profit = □
Use the results from parts (A) and (B) to estimate the average profit per grill if 41 grills are produced.
(C) Estimated average profit =□
The total profit (in dollars) from the sale of x charcoal grills is
P(x)=50x−0.5x2−245
(A) Find the average profit per grill if 40 grills are produced. Ave. profit =23.875
Find the marginal average profit at a production level of 40 grills.
(B) Marginal average profit =24.125 Use the results from parts (A) and (B) to estimate the average profit per grill if 41 grills are produced.
(C) Estimated average profit =24.125
The price-demand and cost functions for the production of microwaves are given as
p=235−90x
and
C(x)=26000+60x,
where x is the number of microwaves that can be sold at a price of p dollars per unit and C(x) is the total cost (in dollars) of producing x units.
(A) Find the marginal cost as a function of x.
C′(x)=
(B) Find the revenue function in terms of x.
R(x)=□
(C) Find the marginal revenue function in terms of x.
R′(x)=□
(D) Evaluate the marginal revenue function at x=1500.
R′(1500)=□
(E) Find the profit function in terms of x.
P(x)=□
(F) Evaluate the marginal profit function at x=1500.
P′(1500)=□
A retail store estimates that weekly sales s and weekly advertising costs x (both in dollars) are related by
s=60000−430000e−0.0005x The current weekly advertising costs are 2000 dollars and these costs are increasing at the rate of 300 dollars per week. Find the current rate of change of sales.
Rate of change of sales =□
A price p (in dollars) and demand x for a product are related by
2x2−2xp+50p2=16200 If the price is increasing at a rate of 2 dollars per month when the price is 10 dollars, find the rate of change of the demand.
Rate of change of demand = □
Suppose that for a company manufacturing calculators, the cost, and revenue equations are given by
C=80000+30x,R=200−40x2
where the production output in one week is x calculators. If the production rate is increasing at a rate of 500 calculators when the production output is 6000 calculators, find each of the following: Rate of change in cost =□ Rate of change in revenue =□ Rate of change in profit = □
Find the intervals on which f(x) is increasing, the intervals on which f(x) is decreasing, and the local extrema.
f(x)=x3+2x+1 Find f′(x).
f(x)=x3+2x+1f′(x)=□
A retail store estimates that weekly sales s and weekly advertising costs x (both in dollars) are related by
s=60000−430000e−0.0005x The current weekly advertising costs are 2000 dollars and these costs are increasing at the rate of 300 dollars per week. Find the current rate of change of sales. Rate of change of sales = □ 2372.96
=autosave\#questio...
ns that the particle moved approximately 30.00 meters to the left.
that v(t)=t2−t−20=(t−5)(t+4) and so v(t)≤v0 on the interval [1,5] and v(t) nus, from this equation, the distance traveled is
∫17∣v(t)∣dt=∫15[−v(t)]dt+∫57v(t)dt=∫15(−t2+t+20)dt+∫57(t2−t−20)dt=[−3t3+2t2+20t]15+[3t3−2t2−20t]=3725
Your answer is correct.
The function given by y=f(x) shows the value of $5000 invested at 5% interest compounded continuously, x years after the money was originally invested.
(Round your answers to the nearest cent.)
Value of $5000 with Continuous Compounding at 5% Part: 0/3 Part 1 of 3
(a) Find the average amount earned per year between the 5 th year and the 10 th year. The average amount earned between the 5 th year and 10 th year is $364.80 per year.
□ Part: 1 / 3 □ Part 2 of 3
(b) rind the average amount earned per year between the 20 th year and the 25 th year. The average ampunt earned between the 20 th year and 25 th year is $ per vear.
□
1. Find dxdy in terms of t for the following parametric equations.
(i) x=t4+t and y=t3−2t
(ii) x=e3t+2 and y=2t2+t
(iii) x=4t3−t and y=t2+8t 2. Find y for the following, by using the given substitution.
(i) y=∫xx2+2dx, let u=x2+2
(ii) y=∫x1−x2dx, let u=1−x2
(iii) y=∫2−3x−x3−3−3x2dx, let u=2−3x−x3 3. Consider the function x3−x2y+2y2=8
(i) Differentiate the function implicitly and show that
dxdy=4y−x22xy−3x2
(ii) Find the tangent equation to the curve x3−x2y+2y2=8 at the point (2,0). 4. Consider the function 4y3−3x2y+x=1
(i) Differentiate the function implicitly and show that
dxdy=12y2−3x26xy−1
(ii) Find the normal equation to the curve 4y3−3x2y+x=1 at the point (0,1). 5. Find the point of intersection between the curve y=9−x2 and the straight line y−x−3=0 shown in Figure 1 below. Hence, find the area bounded by the curve and the straight line. Figure 1 6. Find the point of intersection between the two curves y=x2+2x+2 and y=−x2+2x+10.
Hence, find the area bounded by the two curves.
Find the slope of the tangent line to the ellipse 25x2+9y2=1 at the point (x,y).
slope =□ Are there any points where the slope is not defined? (Enter them as comma-separated ordered-pairs, e.g., (1,3), ( −2,5). Enter none if there are no such points.)
slope is undefined at □
All changes saved The power, P, dissipated when a 11 -volt battery is put across a resistance of R ohms is given by
P=R121 What is the rate of change of power with respect to resistance? rate of change =
5) A rectangular metal sheet shrinks while maintaining its shape, such that its length decreases at a rate of 3cm/second and its width decreases at a rate of 2cm/second. Find the rate of change of its area with respect to time when its length is 6 cm and its width is 5 cm .
Thursday, November 28, 2024
Midterm Exam
Calculus I d (0203101 \& 0213105 ) اكتب رمز الإجابة الصحيحة في الجدول بالحروف الكبيزة A, B, C, D
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline Question & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline Answer & & & & & & & & & & & & & & & \\
\hline
\end{tabular} If f(x)=x−14,g(x)=4x, then the value of x at which f∘g(x)=g∘f(x) is:
A) 41
B) 51
C) −31
D) 31 The graph of the function f(x)=x2−25(x2−7x+10) has at x=−5
A) jump
B) Hole
C) Vertical asymptote
D) continuity point
7-18 Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the function. 7. g(x)=∫1xt3+11dt 8. g(x)=∫3xet2−tdt 9. g(s)=∫5s(t−t2)8dt 10. g(r)=∫0rx2+4dx 11. F(x)=∫xπ1+sectdt[ Hint: ∫xπ1+sectdt=−∫πx1+sectdt]
13. Ein U-Boot beginnt eine Tauchfahrt in P(100∣200∣0) mit 11,1 Knoten in Richtung des Peilziels Z(500∣400∣−80), bis es eine Tiefe von 80 m erreicht hat.
(1 Knoten =1 Stunde Seemeile ≈1,852hkm) Anschließend geht es ohne Kurswechsel in eine horizontale Schleichfahrt von 11 Knoten ein.
Könnte es zu einer Kollision mit der Tauchkugel T kommen, die zeitgleich vom Forschungsschiff S(700∣800∣0) mit einer Geschwindigkeit von 0,5sm senkrecht sinkt?
```latex
\textbf{Flüssigkeiten bei einem Produktionsprozess} In einem Produktionsprozess werden Flüssigkeiten erhitzt und anschließend abgekühlt. Der Temperaturverlauf kann gezielt gesteuert werden, sodass er sich für den gesamten Erhitzungs- bzw. Abkühlungsvorgang für t≥0 durch eine der in R definierten Funktionen fk mit fk(t)=23+20⋅t⋅e−101⋅k⋅t, wobei k eine positive, reelle Zahl sein soll, beschreiben lässt. Dabei ist t die seit Beginn des Vorgangs vergangene Zeit in Minuten und fk(t) die Temperatur in ∘C. \begin{enumerate}
\item[a)] Die in Abbildung 1 dargestellten Graphen A,B und C gehören jeweils zu einem der Werte k=0,5;k=2 und k=5. Ordnen Sie jedem dieser Werte den zugehörigen Graphen zu.
\item[b)] Begründen Sie, dass der in Abbildung 1 dargestellte Graph D nicht zu einer der Funktionen fk gehören kann.
\item[c)] Zeigen Sie, dass gilt
fk′(t)=20⋅e−101⋅k⋅t⋅(1−101⋅k⋅t)
\item[d)] Ermitteln Sie denjenigen Wert von k, für den die Flüssigkeit im Modell eine Höchsttemperatur von 123∘C erreicht.
\item[e)] Ermitteln Sie die Koordinaten des Wendepunktes des Graphen von f10. Interpretieren Sie anschließend die Bedeutung der x-Koordinate dieses Wendepunkts des Graphen von f10 im Sachzusammenhang.
\item[f)] Der in der Abbildung 2 dargestellte Graph gibt für einen gesteuerten Temperaturverlauf die Änderungsrate der Temperatur in Abhängigkeit von der Zeit an, die seit Beginn des Vorgangs vergangen ist. Bestimmen Sie einen Näherungswert für die Änderung der Temperatur in den ersten vier Minuten nach Beginn des Vorganges und geben Sie an, ob die Temperatur zu- oder abnimmt.
\item[g)] Skizzieren Sie für die ersten zwölf Minuten des in Abbildung 2 dargestellten Vorgangs den Graphen eines möglichen Temperaturverlaufs.
\end{enumerate} \textit{Abbildung 1} \textit{Abbildung 2}
```
13. Ein U-Boot beginnt eine Tauchfahrt in P(100∣200∣0) mit 11,1 Knoten in Richtung des Peilziels Z(500∣400∣−80), bis es eine Tiefe von 80 m erreicht hat.
(1 Knoten =1 Stunde Seemeile ≈1,852hkm) Anschließend geht es ohne Kurswechsel in eine horizontale Schleichfahrt von 11 Knoten ein.
Könnte es zu einer Kollision mit der Tauchkugel T kommen, die zeitgleich vom Forschungsschiff S(700∣800∣0) mit einer Geschwindigkeit von 0,5sm senkrecht sinkt?
5 PROBLEMA SVOLTO
4,0mol di un gas perfetto monoatomico si trovano nello stato iniziale A e dopo quattro trasformazioni, rappresentate nel grafico, tornano in A.
a) Determina la temperatura in ciascuno stato.
b) In relazione a ciascuna trasformazione AB,BC,CD,DA calcola il calore assorbito o ceduto, il lavoro prodotto o subito e la variazione di energia interna.
c) Trova infine il calore totale scambiato, il lavoro totale e la variazione totale di energia interna.
Q₁ → The value of
The value of c that satisfies
the conclusion of the mean value
theorem for the function
f(x)=x-= on the interval [1,4]
Momen & Azdeen
a) 3 b) 2
c) 1-2,24 d) None
Q1
08:18 p
A box is to be made out of a 8 cm by 20 cm piece of cardboard. Squares of side length xcm will be cut out of each corner, and then the ends and sides will be folded up to form a box with an open top.
(a) Express the volume V of the box as a function of x.
V=4x3−56x2+160xcm3
(b) Give the domain of V in interval notation. (Use the fact that length and volume must be positive.)
(0,4)
(c) Find the length L, width W, and height H of the resulting box that maximizes the volume. (Assume that W≤L ).
L=□cmW=□cmH=□cm
(d) The maximum volume of the box is □cm3.
Let f(x)=x+1−x Find the local maximum and minimum values of f using both the first and second derivative tests. Which method do you prefer? (That last question can be treated as rhetorical) Below, type none if there are none.
Points with local maximum values
□
Points with local minimum values
□ Note: You can earn partial credit on this problem.
Preview My Answers
Submit Answers
Compute the following limits using L'Hospital's rule if appropriate. Use INF to denote oo and MINF to denote
limx→1x2−17∞−7=□limx→∞(1/x)−7tan−1(x)=□ Note: You can earn partial credit on this problem.
Consider the limit
x→0lim1−cos(8x)sin2(8x) To simplify this limit, we should multiply numerator and denominator by the expression
□
After doing this and simplifying the result we find that the value of limit is
□ Note: You can earn partial credit on this problem.
Preview My Answers
Submit Answers
Path of the projectile vi=20m/s A projectile is fired up an incline (incline angle ϕ ) with an initial speed vi at an angle θi with respect to the horizontal as shown in Figure.
(Take g=10m/s2. Please mark the closest answer as correct answer) Find when the projectile's velocity has only x component
(a) t=1s
(b) t=3.9s
(c) t=6.3s
(d) t=8.6s
(e) t=4s
Path of the projectile
vi=20m/s A projectile is fired up an incline (incline angle ϕ ) with an initial speed vi at an angle
θi with respect to the horizontal as shown in Figure.
(Take g=10m/s2. Please mark the closest answer as correct answer)
Find when the projectile's velocity has only x component
(a) t=1s
(b) t=3.9s
(c) t=6.3s
(d) t=8.6s
(e) t=4s
NYA Module 7: Problem 11 For each of the following forms determine whether the following limit type is indeterminate, always has a fixed finite value, or never has a fixed finite value. In the first case answer IND, in the second enter the numerical value, and in the third case answer DNE.
To discourage blind guessing, this problem is graded on the following scale
0−9 correct = 010−13 correct =.314−16 correct =.517−19 correct =.7 Note that l'Hospital's rule (in some form) may ONLY be applied to indeterminate forms. 1. ∞−∞ 2. ∞−0 3. ∞∞ 4. ∞1 5. π∞ 6. 1∞7.10 8. ∞0 9. π−∞10.∞⋅∞ 11. ∞0 12. −∞113.0⋅∞ 14. 0∞ 15. 1−∞16.1⋅∞ 17. ∞−∞18.00□19.0∞□ 20. 0−∞