Math  /  Calculus

QuestionQuestion Evaluate xe5xdx\int x e^{5 x} d x. Choose u=xu=x and dv=e5xdxd v=e^{5 x} d x.

Studdy Solution
Solve the remaining integral e5xdx\int e^{5x} \, dx:
e5xdx=15e5x \int e^{5x} \, dx = \frac{1}{5} e^{5x}
Substitute back into the expression:
x5e5x1515e5x \frac{x}{5} e^{5x} - \frac{1}{5} \cdot \frac{1}{5} e^{5x}
=x5e5x125e5x = \frac{x}{5} e^{5x} - \frac{1}{25} e^{5x}
Combine the terms:
=(x5125)e5x = \left(\frac{x}{5} - \frac{1}{25}\right) e^{5x}
=5x125e5x = \frac{5x - 1}{25} e^{5x}
Don't forget the constant of integration CC:
=5x125e5x+C = \frac{5x - 1}{25} e^{5x} + C
The evaluated integral is:
5x125e5x+C \boxed{\frac{5x - 1}{25} e^{5x} + C}

View Full Solution - Free
Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord