Math Statement

Problem 26801

Make xx the subject of dxt=m\frac{d x}{t}=m

See Solution

Problem 26802

What is the xx-intercept of the line 6x3y=246 x-3 y=24 ? xx-intercept == \square

See Solution

Problem 26803

The mgf of a random variable XX is given by m(t)=(0,9+0.1et)3m(t)=\left(0,9+0.1 e^{t}\right)^{3}, then p(X=1)p(X=1) is equal to a. 0.0243 b. 0.536 c. 0.027 d. 0.725 e. 0.9

See Solution

Problem 26804

Marked out of 1.00
The moment generating function of a random variable X is given by m(t)=0.3et+0.4+0.3e2tm(t)=0.3 e^{-t}+0.4+0.3 e^{2 t}. Then the mean of X is given by a. 0.4 b. 0.3 c. 0.9 d. 1 e. 2.4

See Solution

Problem 26805

Дана пирамида EABCD. Её основание - параллелограмм, диагонали которого пересекаются в точке OO. Определи, справедливо ли равенство: 1.2ODundefinedADundefined+ACundefined=BEundefined1.2 \overrightarrow{O D}-\overrightarrow{A D}+\overrightarrow{A C}=\overrightarrow{B E} \square
2. ODundefined+OEundefinedCEundefined+0,5CAundefined=OBundefined\overrightarrow{O D}+\overrightarrow{O E}-\overrightarrow{C E}+0,5 \overrightarrow{C A}=\overrightarrow{O B}. \square
3. AEundefinedOEundefined+0,5BDundefined=DAundefined\overrightarrow{A E}-\overrightarrow{O E}+0,5 \overrightarrow{B D}=\overrightarrow{D A}. \square

See Solution

Problem 26806

Exercice ( 5 pts ) On considère la suite UU définie par {U0=23Un+1=3Un+22Un+3;nIN\left\{\begin{array}{c}U_{0}=\frac{2}{3} \\ U_{n+1}=\frac{3 U_{n}+2}{2 U_{n}+3} ; \forall n \in I N\end{array}\right.
1. Calculer U1;U2\boldsymbol{U}_{\mathbf{1}} ; \boldsymbol{U}_{\mathbf{2}}
2. Monter que nIN\forall n \in I N on a : 0Un10 \leq U_{n} \leq 1
3. On pose Vn=Un1NUn+1V_{n}=\frac{U_{n}-1^{N}}{U_{n}+1} a. Monter que la suite (Vn)\left(V_{n}\right) est une suite géométrique b. Calculer Vn\boldsymbol{V}_{\boldsymbol{n}} puis Un\boldsymbol{U}_{\boldsymbol{n}} en fonction de nn c. Calculer Sn=k=0nVnS_{n}=\sum_{k=0}^{n} V_{n} d. Calculer limVn;limUn\lim V_{n} ; \lim U_{n} et limSn\lim S_{n}

See Solution

Problem 26807

Soit {Un}\left\{U_{n}\right\} et (Vn)\left(V_{n}\right) deux suites définies par: Un=2n+4n+32U_{n}=\frac{2^{n}+4 n+3}{2} et Vn=2n4n+32V_{n}=\frac{2^{n}-4 n+3}{2} On pose T1=Un+VnT_{1}=U_{n}+V_{n} et T2=UnVnT_{2}=U_{n}-V_{n} 1) Montrer que T1T_{1} est géométrique et que T2T_{2} est arithmétique ? 2) En déduire S1S_{1} et S2S_{2} en fonction de nn tels que: S1=K=0nUKS_{1}=\sum_{K=0}^{n} \boldsymbol{U}_{K} et S2=K=0nVKS_{2}=\sum_{K=0}^{n} V_{K}

See Solution

Problem 26808

Find the limit limxa{[h(x)]2f(x)g(x)}\lim _{x \rightarrow a}\left\{[h(x)]^{2}-f(x) g(x)\right\} given limxaf(x)=3\lim _{x \rightarrow a} f(x)=3, limxag(x)=5\lim _{x \rightarrow a} g(x)=5, limxah(x)=2\lim _{x \rightarrow a} h(x)=-2.

See Solution

Problem 26809

Find the yy-intercept and slope of the line given by 4x+2y=24 x + 2 y = -2. Provide answers in simplest form.

See Solution

Problem 26810

Find the value of 13|-13|. What is your answer?

See Solution

Problem 26811

Solve the inequality 2(4z+5)>2z22-2(4 z+5)>-2 z-22 and express the solution in interval notation.

See Solution

Problem 26812

Determine the slope and yy-intercept of the line given by 2x+y=12x + y = -1. Provide your answers in simplest form.

See Solution

Problem 26813

Find the yy-intercept and slope of the line given by 5x4y=165x - 4y = 16. Provide answers in simplest form.

See Solution

Problem 26814

Determine the yy-intercept and slope of the line given by 2x+3y=5-2 x + 3 y = 5. Provide answers in simplest form.

See Solution

Problem 26815

Simplify the expression: (6n2n4+7n2)(2n8n48n2)(6n - 2n^4 + 7n^2) - (2n - 8n^4 - 8n^2).

See Solution

Problem 26816

Simplify the expression: (15a8a2)(8a+2a3a2)(1 - 5a - 8a^2) - (8a + 2a^3 - a^2).

See Solution

Problem 26817

Solve the inequality 2(4z+5)>2z22-2(4 z+5)>-2 z-22 and graph the solution.

See Solution

Problem 26818

Find the slope and yy-intercept of the line given by 3x5y=20-3x - 5y = -20. Then, graph the line.

See Solution

Problem 26819

Determine the determinant D=052430242D=\left|\begin{array}{ccc}0 & 5 & 2 \\ 4 & -3 & 0 \\ 2 & 4 & 2\end{array}\right|
Let u=(3,1,2)\vec{u}=(3,-1,2) and v=(4,1,1)\vec{v}=(4,1,1). Normalize the vector u\vec{u}. Determine the cosines of the angles between u\vec{u} and

See Solution

Problem 26820

3). Evaluate by changing of the ordrof integration. (a) 021exdydx\int_{0}^{2} \int_{1}^{e^{x}} d y d x (b) 01x22xxydxdy\int_{0}^{1} \int_{x^{2}}^{2-x} x y d x d y (c) 04ax/4a2axdydx\int_{0}^{4 a} \int_{x / 4 a}^{2 \sqrt{a x}} d y d x.

See Solution

Problem 26821

目分 六、(本题 20 分) RD=3kΩ,RG=10MΩ,VGG=2 V,VDD=15 V,IDSS=8 mA,VP=4 VR_{D}=3 \mathrm{k} \Omega, R_{G}=10 \mathrm{M} \Omega, V_{G G}=2 \mathrm{~V}, V_{D D}=15 \mathrm{~V}, I_{D S S}=8 \mathrm{~mA}, V_{P}=4 \mathrm{~V}. (1) Calculate DC bias VGS,IDV_{G S}, I_{D}, and VDSV_{D S}. (2) Draw the equivalent circuit for ACA C analysis, and determine gm,Zi,Z0\mathrm{g}_{\mathrm{m}}, \mathrm{Z}_{\mathrm{i}}, \mathrm{Z}_{0} and Av\mathrm{A}_{\mathrm{v}}.

See Solution

Problem 26822

f(x)=xexxf(x)=x e^{x}-x is concave up ou?

See Solution

Problem 26823

8. If f(x)={x2+3f(x)=\left\{x^{2}+3\right. (A) a=1,b=3a=1, b=3 (B) 17\frac{1}{7} (C) 13\frac{1}{3} (D) 13\frac{1}{3} (B) a=x<03,b=0}\left.a=\begin{array}{c}x<0 \\ 3, b=0\end{array}\right\} and f(x)f(x) is differentiable at x=0x=0, then: (C) a=3,b=1a=3, b=1 (D) a=0,b=3a=0, b=3  (A) x=ln2 (B) x=ln5 (C) x=ln3\begin{array}{lll}\text { (A) } x=\ln 2 & \text { (B) } x=\ln 5 & \text { (C) } x=\ln 3\end{array} (D) x=2ln5x=2 \ln 5

See Solution

Problem 26824

تمسرين010: ( ش. ت. م 2011 ) (1 A=2x27x+3+(2x1)(3x+2):AA=2 x^{2}-7 x+3+(2 x-1)(3 x+2): A A AA (2x1)(4x1)=0(2 x-1)(4 x-1)=0 : ( 3

See Solution

Problem 26825

Q1: A) Prove that [53w53w2]2=75169\left[\frac{5}{3-w}-\frac{5}{3-w^{2}}\right]^{2}=-\frac{75}{169}

See Solution

Problem 26826

B) If the function f(x)=ax33x2+bx+cf(x)=a x^{3}-3 x^{2}+b x+c has a local minimum at -5 and a local maximum at x=12x=\frac{-1}{2} and inflection point at x=14x=\frac{1}{4} find a,b,cRa, b, c \in R.

See Solution

Problem 26827

B) If z=cos2θ+isin2θz=\cos 2 \theta+i \sin 2 \theta prove that Z+1Z1=icotθ\frac{Z+1}{Z-1}=-i \cot \theta

See Solution

Problem 26828

A+B+C=05A+4B+C+D=010A+6B+D=26A=1\begin{array}{r}A+B+C=0 \\ 5 A+4 B+C+D=0 \\ 10 A+6 B+D=2 \\ 6 A=1\end{array}

See Solution

Problem 26829

Q22 Solve the linear congruence 13x2(mod23.5)13 x \equiv 2(\bmod 2 \cdot 3.5) by solving the system 13x2(mod2)13x2(mod3)13x2(mod5)\begin{array}{l} 13 x \equiv 2(\bmod 2) \\ 13 x \equiv 2(\bmod 3) \\ 13 x \equiv 2(\bmod 5) \end{array}

See Solution

Problem 26830

limx0+x12lnx2x\lim _{x \rightarrow 0^{+}} x-1-\frac{2 \ln x^{2}}{\sqrt{x}}

See Solution

Problem 26831

A+B=0B+C=3A+C=0\begin{array}{l}A+B=0 \\ B+C=-3 \\ A+C=0\end{array}

See Solution

Problem 26832

010y21+y3dxdy\int_{0}^{1} \int_{0}^{y^{2}} \sqrt{1+y^{3}} d x d y

See Solution

Problem 26833

Deduce the solutions of the following equations: i. x45x26=0x^{4}-5 x^{2}-6=0 ii. x5x6=0x-5 \sqrt{x}-6=0

See Solution

Problem 26834

c.) 68=\frac{6}{8}= \square

See Solution

Problem 26835

Calculate 54512\frac{5}{4}-\frac{5}{12} and express the answer as a mixed number.

See Solution

Problem 26836

Solve the inequality 3x+3x+63x + 3 \geq x + 6 and express the solution in interval notation.

See Solution

Problem 26837

Calculate 2892\frac{2}{8} - \frac{9}{2} and express your answer as a mixed number.

See Solution

Problem 26838

Add: 48+53-\frac{4}{8}+\frac{5}{3}. Enter your answer as a mixed number (e.g., 11/211 / 2).

See Solution

Problem 26839

What type of interval is represented by the inequality 2x<6-2 \leq x < 6?

See Solution

Problem 26840

Calculate: 2892\frac{2}{8}-\frac{9}{2} without using a calculator.

See Solution

Problem 26841

Graph the solution for the inequality x5x \geq -5.

See Solution

Problem 26842

Find the slope and yy-intercept of the line given by the equation: 3x5y=20-3x - 5y = -20.

See Solution

Problem 26843

Find the limit as xx approaches π\pi for 3+cos4x\sqrt{3+\cos 4x}.

See Solution

Problem 26844

Convert the following to base ten numerals: a. 5103+1102+7105 \cdot 10^{3}+1 \cdot 10^{2}+7 \cdot 10 b. 6106+410+36 \cdot 10^{6}+4 \cdot 10+3

See Solution

Problem 26845

Simplify the expression 33-3^{3} using exponent properties and show only positive exponents.

See Solution

Problem 26846

Find the car's acceleration at t=2t=2 seconds given s(t)=2t410t35t2+9s(t)=2 t^{4}-10 t^{3}-5 t^{2}+9. Answer in m/s2\mathrm{m} / \mathrm{s}^{2}.

See Solution

Problem 26847

Find the car's acceleration at t=2t=2 seconds, given s(t)=2t49t36t28s(t)=2 t^{4}-9 t^{3}-6 t^{2}-8.

See Solution

Problem 26848

Find the interval(s) where the car slows down given s(t)=2t33+3t2+20t3s(t)=-\frac{2 t^{3}}{3}+3 t^{2}+20 t-3, t0t \geq 0.

See Solution

Problem 26849

Q(3) The particular solution of the ODE 3x(xy2)dx+(x3+2y)dy=0,y(0)=23 x(x y-2) d x+\left(x^{3}+2 y\right) d y=0, y(0)=2, is: (a) x3y+3x2+y2=2x^{3} y+3 x^{2}+y^{2}=2 b) x3y3x2+y2=2x^{3} y-3 x^{2}+y^{2}=2 c) x3y3x2+y2=4x^{3} y-3 x^{2}+y^{2}=4 (d) x3y3x2y2=4x^{3} y-3 x^{2}-y^{2}=4

See Solution

Problem 26850

( O;i,j)O ; \vec{i}, \vec{j}) ( )) (1) lim

See Solution

Problem 26851

Q5. Find dydx\frac{d y}{d x} when 2x2y2=5xsin(y)+2a132 x^{2}-y^{2}=5 x \sin (y)+2 a^{13}

See Solution

Problem 26852

EXERCISE
1. UME 2906 Que 25 simplify (25) 1x×(27)+(121)12×(625)14\frac{1}{x} \times(27)^{\prime}+(121)^{-\frac{1}{2}} \times(625)^{-\frac{1}{4}}

See Solution

Problem 26853

7. UME 2000 Que 9
Simplify 3(2n+1)4(2n1)2n+12n\frac{3\left(2^{n+1}\right)-4\left(2^{n-1}\right)}{2^{n+1}-2^{n}} a. 2n+12^{n+1} b. 2n12^{n-1} c. 4

See Solution

Problem 26854

Find the eigenvalues and eigenvectors of A=[1201]A=\left[\begin{array}{cc} 1 & -2 \\ 0 & 1 \end{array}\right]
And then find:
1. The eigenvalues of A1A^{-1}.
2. The eigenvalues of A3A^{3}.
3. Spectrum and spectral radius.

See Solution

Problem 26855

الآمرين الثاني: (06 نقاط) u0+u1=30,u0×u2=576u_{0}+u_{1}=30 \quad, \quad u_{0} \times u_{2}=576 . nn A 2

See Solution

Problem 26856

11+a+b1+11+b+c1+11+c+a1=1\frac{1}{1+a+b^{-1}}+\frac{1}{1+b+c^{-1}}+\frac{1}{1+c+a^{-1}}=1

See Solution

Problem 26857

تمرين 1
باستعكال التُعريف اوجد مشُقة الدالة f في كل من الحالات التّالية
1. f(x)=2x+1f(x)=\sqrt{2 x+1},
2. f(x)=x3f(x)=\sqrt[3]{x},
3. f(x)=1xf(x)=\frac{-1}{x}.

تمرين 2
احسب مشّقة الدالة ff في كل من الحالات التّالية
1. f(x)=cos14xf(x)=\cos \sqrt{1-4 x}, 2. f(x)=lnx44,3f(x)=\ln \sqrt[4]{x-4}, 3. f(x)=lnx32x2+1f(x)=\ln \frac{x^{3}-2}{x^{2}+1}.

تصرين3
احسب النهايات التّلية limx06x23exx33x3,limx1x+32x+83\lim _{x \rightarrow 0} \frac{6 x^{2}}{3 e^{x}-x^{3}-3 x-3} \quad, \quad \lim _{x \rightarrow 1} \frac{\sqrt{x+3}-2}{\sqrt{x+8}-3}

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord