Math  /  Calculus

Question3). Evaluate by changing of the ordrof integration. (a) 021exdydx\int_{0}^{2} \int_{1}^{e^{x}} d y d x (b) 01x22xxydxdy\int_{0}^{1} \int_{x^{2}}^{2-x} x y d x d y (c) 04ax/4a2axdydx\int_{0}^{4 a} \int_{x / 4 a}^{2 \sqrt{a x}} d y d x.

Studdy Solution
Evaluate the integral 04a[x]4ayy24ady \int_{0}^{4a} \left[ x \right]_{4ay}^{\frac{y^2}{4a}} d y :
=04a(y24a4ay)dy = \int_{0}^{4a} \left( \frac{y^2}{4a} - 4ay \right) d y
=04a(y24a4ay)dy = \int_{0}^{4a} \left( \frac{y^2}{4a} - 4ay \right) d y
Evaluate each term separately:
04ay24ady=14a[y33]04a=14a(4a)33=64a23 \int_{0}^{4a} \frac{y^2}{4a} \, dy = \frac{1}{4a} \left[ \frac{y^3}{3} \right]_{0}^{4a} = \frac{1}{4a} \cdot \frac{(4a)^3}{3} = \frac{64a^2}{3}
04a4aydy=4a[y22]04a=4a(4a)22=32a3 \int_{0}^{4a} -4ay \, dy = -4a \left[ \frac{y^2}{2} \right]_{0}^{4a} = -4a \cdot \frac{(4a)^2}{2} = -32a^3
Combine the results:
64a2332a3 \frac{64a^2}{3} - 32a^3
The solutions to the integrals are: (a) e21 e^2 - 1 (b) 38 \frac{3}{8} (c) 64a2332a3 \frac{64a^2}{3} - 32a^3

View Full Solution - Free
Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord