Math  /  Calculus

QuestionQ5. Find dydx\frac{d y}{d x} when 2x2y2=5xsin(y)+2a132 x^{2}-y^{2}=5 x \sin (y)+2 a^{13}

Studdy Solution
Rearrange the equation to solve for dydx\frac{dy}{dx}:
1. Move all terms involving dydx\frac{dy}{dx} to one side of the equation: $ -2y \frac{dy}{dx} - 5x \cos(y) \frac{dy}{dx} = 5 \sin(y) - 4x \]
2. Factor out dydx\frac{dy}{dx}: $ \frac{dy}{dx}(-2y - 5x \cos(y)) = 5 \sin(y) - 4x \]
3. Solve for dydx\frac{dy}{dx}: $ \frac{dy}{dx} = \frac{5 \sin(y) - 4x}{-2y - 5x \cos(y)} \]
The derivative dydx\frac{dy}{dx} is:
dydx=5sin(y)4x2y5xcos(y)\frac{dy}{dx} = \frac{5 \sin(y) - 4x}{-2y - 5x \cos(y)}

View Full Solution - Free
Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord