Math Statement

Problem 11401

(1.24) Show that A,B\boldsymbol{A}, \boldsymbol{B}, and C\boldsymbol{C} are linearly dependent if AB×C=0\boldsymbol{A} \cdot \boldsymbol{B} \times \boldsymbol{C}=0.

See Solution

Problem 11402

Simplify by rationalizing the denominator. 3m5\frac{\sqrt{3}}{\sqrt{m}-\sqrt{5}} \square

See Solution

Problem 11403

Given the function ff and point a below, complete parts (a)-(c). f(x)=76x,a=16f(x)=7-6 x, a=\frac{1}{6}
1 (x) - 6 b. Graph f(x)f(x) and f1(x)f^{-1}(x) together. Choose the correct graph below. A. B. C. D. c. Evaluate dfdx\frac{d f}{d x} at x=ax=a and df1dx\frac{d f^{-1}}{d x} at x=f(a)x=f(a) to show that df1dxx=f(a)=1(df/dx)x=a\left.\frac{d f^{-1}}{d x}\right|_{x=f(a)}=\frac{1}{\left.(d f / d x)\right|_{x=a}} dfdxx=16=\left.\frac{d f}{d x}\right|_{x=\frac{1}{6}}= \square df1dxx=f(16)=\left.\frac{d f^{-1}}{d x}\right|_{x=f\left(\frac{1}{6}\right)}= \square (Simplify your answers. Use integers or fractions for any numbers in the expressions.)

See Solution

Problem 11404

45. Let ff be the function with derivative given by f(x)=x22xf^{\prime}(x)=x^{2}-\frac{2}{x}. On which of the following intervals is ff decreasing?

See Solution

Problem 11405

Exercice 1: Soit ff une fonction numérique de var iablex définie par : f(x)=x2f(x)=\sqrt{x^{2}} et Soit (Cf)\left(C_{f}\right) sa courbe sur un repére (O;i;j)(O ; \vec{i} ; \vec{j}) 1) Donner ledomaine de définition dela fonction ff. 2) Etudier la parité dela fonction ff. 2) a-Calculer limx+f(x)\lim _{x \rightarrow+\infty} f(x). bb-Etudier labranche inf inie de (Cf)\left(C_{f}\right) au voi sin\sin agede ++\infty. 4) a-Etudier la dérivabilité de f à droite de 0 . bb-Etudier les var iations dela fonction ff. 5) Tracer ( Cf)\left.C_{f}\right).

See Solution

Problem 11406

Solve cos2(x)=8sin(x)\cos ^{2}(x)=-8 \sin (x) for all solutions 0x<2π0 \leq x<2 \pi. x=x=

See Solution

Problem 11407

A formula for a function y=f(x)y=f(x) is f(x)=10x5f(x)=10 x^{5}. Find f1(x)f^{-1}(x) and identify the domain and range of f1(x)f^{-1}(x). To check the answer, determine whether f(f1(x))=f1(f(x))=xf\left(f^{-1}(x)\right)=f^{-1}(f(x))=x. f1(x)=f^{-1}(x)= \square (Type an exact answer, using radicals as needed.)

See Solution

Problem 11408

Solve. (Enter your answers as a comma-separated list. If there is no solution, enter NO SOLUTION.) x+1=x+8x=\begin{array}{l} \sqrt{x}+1=\sqrt{x+8} \\ x=\square \end{array} Additional Materials

See Solution

Problem 11409

(5) Round each of these numbers to 1 decimal place. 221.18221.18 \longrightarrow \square

See Solution

Problem 11410

Consider the function f(x)=xe5x,0x2f(x)=x e^{-5 x}, \quad 0 \leq x \leq 2. This function has an absolute minimum value equal to: \square which is attained at x=x= \square and an absolute maximum value equal to: which is attained at x=x= \square

See Solution

Problem 11411

Simplify the following expression completely: (7w8)(8w9)(2w6)\left(7 w^{8}\right)\left(8 w^{9}\right)\left(2 w^{6}\right) Answer: \square

See Solution

Problem 11412

Given that u=v24u=v^{2}-4, find ddv(3u52sinv)\frac{d}{d v}\left(3 u^{5}-2 \sin v\right) in terms of only vv.

See Solution

Problem 11413

2. (3 points) The point (12,8)(-12,8) is on the graph of y=f(x)y=f(x). Determine the coordinates of the image point on y=f(82x)+3y=-f(8-2 x)+3 Wref

See Solution

Problem 11414

Simplify: (4x5y0)(6x0)\left(4 x^{5} y^{0}\right)\left(6 x^{0}\right)

See Solution

Problem 11415

Simplify the expression completely: 14y9=\frac{1}{4 y^{-9}}= \square

See Solution

Problem 11416

54. The function ff is defined by f(x)=ex(x2+2x)f(x)=e^{-x}\left(x^{2}+2 x\right). At what values of xx does ff have a relative maximum? (A) x=2+2x=-2+\sqrt{2} and x=22x=-2-\sqrt{2}

See Solution

Problem 11417

Solve the following inequality. x311x2>0x^{3}-11 x^{2}>0

See Solution

Problem 11418

Using three rectangles and the midpoint rule, estimate the area above the xx-axis and under the function f(x)=1(cosπx3)6f(x)=1-\left(\cos \frac{\pi x}{3}\right)^{6} over the interval [0,3][0,3]. Leave your answer as an exact value. Note that f(x)0f(x) \geq 0 for all xx.

See Solution

Problem 11419

4. Given f(x)=exf(x)=e^{x} and g(x)=x3g(x)=|x-3|. (a) Show that (fg)(x)={ex3,x3e(x3),x<3(f \circ g)(x)=\left\{\begin{array}{ll}e^{x-3}, & x \geq 3 \\ e^{-(x-3)}, & x<3\end{array}\right.. (b) Determine (fg)1(x)(f \circ g)^{-1}(x), for x3x \geq 3. [3 marks] [4 marks] (c) Find the function h(x)h(x) for x>13x>\frac{1}{3}, given that (hf)(x)=2ex13ex(h \circ f)(x)=\frac{2 e^{x}}{1-3 e^{x}}. Hence, show that h(x)h(x) is a one to one function.

See Solution

Problem 11420

21 Mark for Review
The function mm is given bs m(x)=log10e+log10(x1)m(x)=\log _{10} e+\log _{10}\left(x^{-1}\right). Which of the following statements about mm is true? (A) mm is increasing, the graph of mm is concave up, and limxm(x)=log10e\lim _{x \rightarrow-\infty} m(x)=\log _{10} e. (B) mm is increasing, the graph of mm is concave down, and limx0+m(x)=\lim _{x \rightarrow 0^{+}} m(x)=-\infty. (C) mm is decreasing, the graph of mm is concave up, and limx0+m(x)=\lim _{x \rightarrow 0^{+}} m(x)=\infty. (D) mm is decreasing, the graph of mm is concave down, and limxm(x)=log10e\lim _{x \rightarrow-\infty} m(x)=-\log _{10} e

See Solution

Problem 11421

(2) 3x232x+14=\frac{3 x-2}{3}-\frac{2 x+1}{4}=

See Solution

Problem 11422

Find the exact value of cos2π9cosπ18+sin2π9sinπ18\cos \frac{2 \pi}{9} \cos \frac{\pi}{18}+\sin \frac{2 \pi}{9} \sin \frac{\pi}{18}

See Solution

Problem 11423

Evaluate the indefinite integral by using the substitution u=x2+19\mathrm{u}=\mathrm{x}^{2}+19. 2x(x2+19)10dx2x(x2+19)10dx=\begin{array}{l} \int 2 x\left(x^{2}+19\right)^{-10} d x \\ \int 2 x\left(x^{2}+19\right)^{-10} d x= \end{array}

See Solution

Problem 11424

Express ln543\ln \sqrt[3]{54} in terms of ln2\ln 2 and/or ln3\ln 3. ln543=\ln \sqrt[3]{54}= \square (Type an exact answer.)

See Solution

Problem 11425

Use the properties of logarithms to simplify the expression ln(sinθ)ln(sinθ4)\ln (\sin \theta)-\ln \left(\frac{\sin \theta}{4}\right). ln(sinθ)ln(sinθ4)=\ln (\sin \theta)-\ln \left(\frac{\sin \theta}{4}\right)=\square (Type an exact answer.)

See Solution

Problem 11426

Part 1 of 11
For the quadratic function f(x)=x2+6xf(x)=x^{2}+6 x, answer parts (a) through ( ff ). (a) Find the vertex and the axis of symmetry of the quadratic function, and determine whether the graph is concave up or concave down.
The vertex is \square (Type an ordered pair, using integers or fractions.)

See Solution

Problem 11427

f(x)=3x2+6xf(x)=-3 x^{2}+6 x
The quadratic function has a \square value.

See Solution

Problem 11428

f(x)=3x2+24x3f(x)=3 x^{2}+24 x-3
Does the quadratic function ff have a minimum value or a maximum value? The function ff has a maximum value. The function ff has a minimum value.

See Solution

Problem 11429

The acceleration function (in m/s2\mathrm{m} / \mathrm{s}^{2} ) and the initial velocity v(0)v(0) are given for a particle moving along a line. a(t)=2t+4,v(0)=5,0t5a(t)=2 t+4, \quad v(0)=-5, \quad 0 \leq t \leq 5 (a) Find the velocity at time tt. v(t)=v(t)= \square m/s\mathrm{m} / \mathrm{s} (b) Find the distance traveled during the given time interval.

See Solution

Problem 11430

f(x)=3x2+24x3f(x)=3 x^{2}+24 x-3
Does the quadratic function ff have a minimum value or a maximum value? The function ff has a maximum value. The function ff has a minimum value. What is this minimum or maximum value? \square (Simplify your answer.)

See Solution

Problem 11431

f(x)=2x28x+6f(x)=2 x^{2}-8 x+6
The quadratic function has a minimum value. The value is \square

See Solution

Problem 11432

Determine the quadratic function ff whose graph is given. The vertex is (3,3)(3,-3) and the other given point is (2,1)(2,-1). f(x)=f(x)= \square (Simplify your answer.)

See Solution

Problem 11433

Find cc if a=2.14mi,b=3.99mia=2.14 \mathrm{mi}, b=3.99 \mathrm{mi} and C=40.9\angle C=40.9 degrees. c=c= \square mi ;
Assume A\angle A is opposite side a,Ba, \angle B is opposite side bb, and C\angle C is opposite side cc. Question Help: Video

See Solution

Problem 11434

Determine the quadratic function ff whose graph is given. The vertex is (4,4)(4,-4) and the other given point is (3,2)(3,-2). f(x)=f(x)= \square

See Solution

Problem 11435

Find the measure of 2\angle 2 given that m1=(2x+29)\mathrm{m} \angle 1=(2 x+29)^{\circ} and m2=(3x17)\mathrm{m} \angle 2=(3 x-17)^{\circ}, where they are vertical angles.

See Solution

Problem 11436

Find the value of xx if 1\angle 1 and 2\angle 2 are vertical angles with m1=(2x2)\mathrm{m} \angle 1=(2x-2)^{\circ} and m2=(3x15)\mathrm{m} \angle 2=(3x-15)^{\circ}.

See Solution

Problem 11437

Simplify these expressions: A) 81=\sqrt{81}= B) 16=\sqrt{16}=

See Solution

Problem 11438

Simplify the expression: 162y4mz2=\sqrt{162 y^{4} m z^{2}}=

See Solution

Problem 11439

Simplify these expressions: A) 16=\sqrt{\sqrt{16}}= B) 4+64=\sqrt{4}+\sqrt{64}=

See Solution

Problem 11440

Find the limit: limx0(e3x1x)\lim _{x \rightarrow 0}\left(\frac{e^{3 x}-1}{x}\right).

See Solution

Problem 11441

Combine like terms for: 4x2+5x24 x^{2}+5 x^{2}, 7x+3x7 x+3 x, 11x5+6x11 x^{5}+6 x, and 4x+2x+5x4 x+2 x+5 x.

See Solution

Problem 11442

Find matrix CC such that AB+CT=(10178102015096)A B + C^{T} = \left(\begin{array}{ccc}-10 & -17 & -8 \\ 10 & 20 & 15 \\ 0 & -9 & -6\end{array}\right), where A=(130521)A = \left(\begin{array}{cc}1 & -3 \\ 0 & 5 \\ 2 & -1\end{array}\right) and B=(121253)B = \left(\begin{array}{ccc}1 & -2 & 1 \\ 2 & 5 & 3\end{array}\right).

See Solution

Problem 11443

Convert 39,μgdL39, \frac{\mu \mathrm{g}}{\mathrm{dL}} to gmL\frac{\mathrm{g}}{\mathrm{mL}} by finding the missing fraction.

See Solution

Problem 11444

Find values of kk such that the line y=k(2x+1)y=k(-2x+1) is tangent to the curve y=x2+6y=x^2+6.

See Solution

Problem 11445

Find kk such that the line y=xky=x-k is tangent to the curve kx22xy4x3=0k x^{2}-2 x y-4 x-3=0.

See Solution

Problem 11446

Bestimme die erste und zweite Ableitung der Funktionen: a) f(x)=ex+1f(x)=e^{x}+1, b) f(x)=ex+xf(x)=e^{x}+x, c) f(x)=ex+2x2f(x)=e^{x}+2 x^{2}, d) f(x)=ex+1f(x)=-e^{x}+1, e) f(x)=2ex+3x2f(x)=2 e^{x}+3 x^{2}, f) f(x)=5ex0,5x3f(x)=-5 e^{x}-0,5 x^{3}, g) f(x)=12(exx3)f(x)=-\frac{1}{2}(e^{x}-x^{3}), h) f(x)=14ex+sin(x)f(x)=\frac{1}{4}e^{x}+\sin(x).

See Solution

Problem 11447

Determine if sin[(4n+3)90]\sin \left[(4 n+3) \cdot 90^{\circ}\right] equals 0, 1, -1, or is undefined for integer nn.

See Solution

Problem 11448

Solve the equation 4x+y=04x + y = 0 for x0x \geq 0.

See Solution

Problem 11449

Find the product of f(x)=14x2f(x) = \frac{1}{4x^{2}} and g(x)=4x2g(x) = 4x^{2}, labeled as fgf*g and gfg*f.

See Solution

Problem 11450

Bestimmen Sie die erste Ableitung für die folgenden Funktionen und überprüfen Sie mit dem GTR: a) 2x(4x1)2 x \cdot(4 x-1), b) (5x+3)(x+2)(5 x+3) \cdot(x+2), c) (25x)(x+2)(2-5 x) \cdot(x+2), d) 2xex2 x \cdot e^{x}, e) (4x+2)ex(4 x+2) \cdot e^{x}, f) (6x+1)ex(6 x+1) \cdot e^{x}.

See Solution

Problem 11451

Evaluate f(3)f(3) for f(x)=x2f(x)=x^{2}. A. 3 B. 6 C. 9 D. 12 Solve: 3t2z=43t-2z=4, 4t+z=74t+z=7. A. (2,1)(2,-1) B. (1,2)(-1,2) C. (1,3)(1,3) D. (3,2)(-3,-2) Find the inverse of f(x)=2f(x)=2. A. f1(x)=log2xf^{-1}(x)=\log 2 x B. f1(x)=lnxf^{-1}(x)=\ln x C. f1(x)=exf^{-1}(x)=e^{x} D. f1(x)=x2f^{-1}(x)=x^{2} Calculate log28\log_{2} 8. A. 2 B. 3 C. 4 D. 8 What is log525\log_{5} 25? A. 2 B. 4 C. 6 D. 8 Given log3m+log3m4=2\log_{3} m + \log_{3} m 4 = 2, find mm. A. 2 B. 4 C. 5 D. 6

See Solution

Problem 11452

Calcula y simplifica: 1[32512(23+19)]1-\left[\frac{3}{2} \cdot 5-\frac{1}{2} \cdot\left(\frac{2}{3}+\frac{1}{9}\right)\right]

See Solution

Problem 11453

1. If 2d=1032d = \frac{-10}{3}, find dd. A. d=2d=-2 B. d=2d=2 C. d=8d=8 D. d=10d=10
2. Expand (2k+3)(4k5)(2k+3)(4k-5). A. 8k2+2k+158k^{2}+2k+15 B. 8k2+2k158k^{2}+2k-15 C. 8k22k158k^{2}-2k-15 D. 8k2+4k158k^{2}+4k-15
3. Simplify 7n2n(1n)7n^{2}-n(1-n). A. 8n2n8n^{2}-n B. 6n2n6n^{2}-n C. 8n2+n8n^{2}+n D. 6n2+n6n^{2}+n
4. Solve t31<t\frac{t}{3}-1 < t. A. 13<t\frac{1}{3} < t B. 13<t-\frac{1}{3} < t C. 32<t\frac{-3}{2} < t D. 32<t\frac{3}{2} < t
5. Solve a+1>12a2a+1 > \frac{1}{2}a-2. A. a>6a > -6 B. a>6a > 6 C. a>23a > \frac{2}{3} D. a>2a > -2

See Solution

Problem 11454

Calcula y simplifica: 1[32512(23+19)]1-\left[\frac{3}{2} \cdot 5-\frac{1}{2} \cdot\left(\frac{2}{3}+\frac{1}{9}\right)\right]

See Solution

Problem 11455

Calcula y simplifica: 1[32512(23+19)]=1-\left[\frac{3}{2} \cdot 5-\frac{1}{2} \cdot\left(\frac{2}{3}+\frac{1}{9}\right)\right]=

See Solution

Problem 11456

Find the intersection of the lines defined by the equations y=53xy=5-3x and y=3xy=-3x.

See Solution

Problem 11457

What is the name of the compound NH4NO3\mathrm{NH}_{4} \mathrm{NO}_{3}?

See Solution

Problem 11458

How many phosphorus atoms are in the formula Ca3(PO4)2\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}?

See Solution

Problem 11459

Find the intercepts of the equation 9x2+4y2=369 x^{2}+4 y^{2}=36. A. List them as ordered pairs. B. Or state there are none.

See Solution

Problem 11460

Is the point (8,4)(-8,-4) on the graph of x=4y4x=4y-4? Answer True or False.

See Solution

Problem 11461

Find the value of g(x)f(x)g(x) - f(x) given f(x)=5f(x)=5 and g(x)=5xg(x)=5x. Select the correct option.

See Solution

Problem 11462

What is the value of g(x)f(x)g(x) - f(x) for the functions f(x)=5f(x)=5 and g(x)=5xg(x)=5x?

See Solution

Problem 11463

Is every graph a function? Choose true or false with reasons: A) true for unique yy-values, B) true for unique xx-values, C) false for yy-axis crossings, D) false for xx-axis crossings.

See Solution

Problem 11464

Find the function m(x)m(x) that is 15 less than three times the input. Choose the correct equation.

See Solution

Problem 11465

Calculate 7! / 15! and select the correct answer: a. 3.85, b. 0.000000000384, c. 384000000000, d. 0.00000000384.

See Solution

Problem 11466

Solve for aa in the equation za=z3z^{a}=z^{3} given that z>1z>1. Options: a. 1 b. 9 c. 27 d. 3

See Solution

Problem 11467

Calculate (56)2÷(5849)\left(\frac{5}{6}\right)^{2} \div\left(\frac{5}{8}-\frac{4}{9}\right).

See Solution

Problem 11468

Calculate the expression: 18525\frac{18}{5-2}-5.

See Solution

Problem 11469

Which sign makes this true? 3164_3964 \frac{31}{64} \_ 3 \frac{9}{64}

See Solution

Problem 11470

Find a parallel line to the function y=214xy=2 \frac{1}{4} x. Choose the correct option: a. y=12xy=\frac{1}{2} x b. y=214xy=-2 \frac{1}{4} x c. y=2214xy=2-2 \frac{1}{4} x d. y=2+94xy=2+\frac{9}{4} x

See Solution

Problem 11471

Calculate the expression: 84+2+58 - 4 + 2 + 5.

See Solution

Problem 11472

Find the quantity qq for break-even where P=1004qP=100-4q and TC=320+4qTC=320+4q.

See Solution

Problem 11473

Calculate: 15+397\frac{15+3}{9} \cdot 7

See Solution

Problem 11474

Find the loss profit points for the monopolist with demand p=152.53qp=152.5-3q and cost TVC=0.5q315q2+175qTVC=0.5q^3-15q^2+175q, TFC=0TFC=0.

See Solution

Problem 11475

Find the marginal cost MCM C and average cost ACA C from the total cost function TC=300ln(q+30)+150T C=300 \ln (q+30)+150.

See Solution

Problem 11476

Calculate (9+7)(72)(9+7)-(7-2).

See Solution

Problem 11477

Find the cost to produce the 16th16^{th} unit using the total cost function TC=q3q2+120qT C=q^{3}-q^{2}+120 q.

See Solution

Problem 11478

Find the tangent line equation for f(x)=xf(x) = \sqrt{x} at the point (1,1).

See Solution

Problem 11479

Classify the numbers 22, 44, and 2×42 \times 4 as rational or irrational.

See Solution

Problem 11480

Find the limit: limΔx0[89(4+Δx)](28)Δx\lim _{\Delta x \rightarrow 0} \frac{[8-9(4+\Delta x)]-(-28)}{\Delta x}.

See Solution

Problem 11481

Find the function f(x)f(x) and the number cc given the limit: limΔx0[89(4+Δx)](28)Δx\lim _{\Delta x \rightarrow 0} \frac{[8-9(4+\Delta x)]-(-28)}{\Delta x}

See Solution

Problem 11482

Which sign makes 4351?4751\frac{43}{51} ? \frac{47}{51} true?

See Solution

Problem 11483

Solve 107x+7+108010|7 x+7|+10 \geq 80 for xx.

See Solution

Problem 11484

Which sign makes 545?5.75 \frac{4}{5} ? 5.7 true? Choose from >> or ==.

See Solution

Problem 11485

What sign makes this true? 25764?2 -2 \frac{57}{64} ?-2

See Solution

Problem 11486

Which sign makes 2547?4047\frac{25}{47} ? \frac{40}{47} true?

See Solution

Problem 11487

Calculate 3102+893 \cdot \frac{10}{2+8} \cdot 9.

See Solution

Problem 11488

Which sign makes this true: 35?710 \frac{-3}{5} ? \frac{-7}{10} ?

See Solution

Problem 11489

Which sign makes this true? 8116?5116 \frac{81}{16} ? 5 \frac{1}{16}

See Solution

Problem 11490

Which symbol makes this statement true? 3.51?3291003.51 \, ? \, 3 \frac{29}{100}

See Solution

Problem 11491

Evaluate f(x)=xxf(x)=\frac{|x|}{x} for f(4)f(-4), f(1)f(-1), f(0)f(0), f(9)f(9), and f(x4)f(x^{4}). Find f(1/x)f(1/x) based on the sign of xx.

See Solution

Problem 11492

Find the ending amount with compound interest for \$700 at 3\% compounded annually.

See Solution

Problem 11493

Find the value of f(3)f(-3) for the function f(x)=2x3f(x)=2x-3.

See Solution

Problem 11494

Solve the equation 7(x1)=2x+5+9x7(x-1)=-2 x+5+9 x.

See Solution

Problem 11495

Simplify the expression: (a2b)4(a3b2c2)3\left(\frac{a^{2}}{b}\right)^{4}\left(\frac{a^{3} b^{2}}{c^{2}}\right)^{3}.

See Solution

Problem 11496

Solve for xx in the equation x5+3=10\frac{x}{5}+3=10.

See Solution

Problem 11497

Find the average rate of change of h(x)=x210xh(x)=x^{2}-10x from x=5x=-5 to x=0x=0.

See Solution

Problem 11498

Calculate the distance between the points (2,1)(2,-1) and (3,4)(3,-4).

See Solution

Problem 11499

Find the slope between the points (2,1)(2,-1) and (3,4)(3,-4).

See Solution

Problem 11500

Simplify the expression: (3z)2(12z3)3(3 z)^{2}(12 z^{3})^{-3}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord