Math Statement

Problem 11101

Find the limit: limh0x+hxh\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}.

See Solution

Problem 11102

Row reduce the matrix and find pivot positions. Given matrix: [123456786789] \left[\begin{array}{llll} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 6 & 7 & 8 & 9 \end{array}\right]

See Solution

Problem 11103

Row reduce the matrix and identify pivot positions. Which option shows the correct reduced echelon form?
[123456786789] \left[\begin{array}{llll} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 6 & 7 & 8 & 9 \end{array}\right]
A. [101201230000] \left[\begin{array}{rrrr}1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0\end{array}\right]
B. [100001000011] \left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1\end{array}\right]
C. [120000150000] \left[\begin{array}{llll}1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0\end{array}\right]
D. [100101050016] \left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 5 \\ 0 & 0 & 1 & 6\end{array}\right]

See Solution

Problem 11104

Use row operations to solve the system:
5x1x_{1} + 10x2x_{2} = 15 3x1x_{1} + 7x2x_{2} = 6
Provide the solution as an ordered pair.

See Solution

Problem 11105

Find values for the piecewise function f(x)f(x): a. f(2)f(-2) b. f(25)f\left(-\frac{2}{5}\right) c. f(4)f(4) d. Solve f(x)=2.5f(x)=-2.5.

See Solution

Problem 11106

Do the planes x1+4x2+x3=5x_{1}+4 x_{2}+x_{3}=5, x2x3=1x_{2}-x_{3}=1, and 2x1+10x2=82 x_{1}+10 x_{2}=8 intersect at a common point? A, B, or C?

See Solution

Problem 11107

Find the yy-intercept of the equation 8x+3y=158x + 3y = 15.

See Solution

Problem 11108

Find values of h for which the matrix is consistent: [1245h20] \left[\begin{array}{rrr} 1 & 2 & -4 \\ 5 & h & -20 \end{array}\right] Choose A, B, C, or D.

See Solution

Problem 11109

Find the general solution for the system with the augmented matrix:
[12033505] \left[\begin{array}{llll} 1 & 2 & 0 & 3 \\ 3 & 5 & 0 & 5 \end{array}\right]
Choose the correct option for x1x_1, x2x_2, and x3x_3.

See Solution

Problem 11110

Find the slope and yy-intercept value of the line: y=3x8y=3x-8.

See Solution

Problem 11111

Solve the system from the matrix: [013613714] \begin{bmatrix} 0 & 1 & -3 & 6 \\ 1 & -3 & 7 & -14 \end{bmatrix} Choose the correct solution set or state if there's no solution.

See Solution

Problem 11112

The parabola y=3x2+4y=3 x^{2}+4 opens upwards.

See Solution

Problem 11113

Determine the direction in which the parabola x=23y23x=\frac{2}{3} y^{2}-3 opens.

See Solution

Problem 11114

Use row operations to solve the system: 5x1x_1 + 10x2x_2 = 15, 3x1x_1 + 7x2x_2 = 6.

See Solution

Problem 11115

Choose values for hh and kk so the system has no solution, a unique solution, or many solutions.
1. x1+hx2=3x_{1}+h x_{2}=3
2. 2x1+6x2=k2 x_{1}+6 x_{2}=k

a. Fill in the blanks for when there are no solutions.

See Solution

Problem 11116

Simplify the expression: x29x+14x2+7x18\frac{x^{2}-9 x+14}{x^{2}+7 x-18}.

See Solution

Problem 11117

Use row operations to solve the system:
7x₁ + 14x₂ = -21 4x₁ + 5x₂ = 6

See Solution

Problem 11118

Divide the rational expressions and simplify: 3x615÷5x103\frac{3 x-6}{15} \div \frac{5 x-10}{3}.

See Solution

Problem 11119

Do the planes x1+2x2+x3=5x_{1}+2 x_{2}+x_{3}=5, x2x3=1x_{2}-x_{3}=1, and 2x1+6x2=102 x_{1}+6 x_{2}=10 intersect at a common point? Choose A, B, or C.

See Solution

Problem 11120

Find values of hh for which the matrix is consistent: [1432h6] \left[\begin{array}{rrr} 1 & 4 & -3 \\ 2 & h & -6 \end{array}\right] Choices: A. hh \neq B. h=h= C. for all hh D. for no hh.

See Solution

Problem 11121

Multiply: 3x37x+74x+414x14\frac{3 x-3}{7 x+7} \cdot \frac{4 x+4}{14 x-14}

See Solution

Problem 11122

Find the general solution for the system with the matrix:
[01221465] \left[\begin{array}{rrrr} 0 & 1 & -2 & 2 \\ 1 & -4 & 6 & -5 \end{array}\right]
Choose A, B, C, or D for your answer.

See Solution

Problem 11123

Find the average cost per calculator when producing xx thousand calculators, given C=7.6x2+7395x+290,000C=-7.6 x^{2}+7395 x+290,000.

See Solution

Problem 11124

Find the average cost per calculator for producing xx thousand calculators given C=15.2x2+15,990x+540,000C=-15.2 x^{2}+15,990 x+540,000.

See Solution

Problem 11125

Find the general solution for the system with the augmented matrix:
[11032109] \left[\begin{array}{llll} 1 & 1 & 0 & -3 \\ 2 & 1 & 0 & -9 \end{array}\right]
Choose A, B, C, or D based on the solution.

See Solution

Problem 11126

Choose hh and kk for the system to have (a) no solution, (b) a unique solution, and (c) many solutions. x1+hx2=54x1+8x2=k \begin{array}{r} x_{1}+h x_{2}=5 \\ 4 x_{1}+8 x_{2}=k \end{array}

See Solution

Problem 11127

Calculate the values for: 5 - 10 = \square and -4 - 4 = \square.

See Solution

Problem 11128

Calculate the value of cos45\cos 45^{\circ}. Simplify your answer with radicals, integers, or fractions.

See Solution

Problem 11129

Evaluate 72.453x2+1354.5x+2196.5x+4\frac{72.453 x^{2}+1354.5 x+2196.5}{x+4} for x=11x=11.

See Solution

Problem 11130

Find if the average cost per patient per day, given by 72.453x2+1354.5x+2196.5x+4\frac{72.453 x^{2}+1354.5 x+2196.5}{x+4}, will reach \4000by2026.Whatis4000 by 2026. What is x?? x= x= $

See Solution

Problem 11131

Find if average hospital cost per patient per day will reach \4000by2026using4000 by 2026 using x=26$. A. Yes B. No.

See Solution

Problem 11132

Find the side length bb using a=5a=5 and c=6c=6. Rationalize denominators when needed. Simplify your answer.

See Solution

Problem 11133

Simplify (m9p5)4\left(m^{-9} p^{5}\right)^{-4} with positive exponents. What is the result?

See Solution

Problem 11134

Find the exact value of tan45\tan 45^{\circ}. What is tan45=\tan 45^{\circ}=? Simplify your answer.

See Solution

Problem 11135

Simplify the expression (2a1)2(a3)2(2 a^{-1})^{2}(a^{3})^{-2} to eliminate negative exponents.

See Solution

Problem 11136

Simplify the expression (2a1)2(a3)2(2 a^{-1})^{2}(a^{3})^{-2} to eliminate negative exponents, assuming variables are nonzero.

See Solution

Problem 11137

Simplify the expression: (2a4)3(a5)3(2 a^{-4})^{3}(a^{5})^{-3}, ensuring no negative exponents remain.

See Solution

Problem 11138

Use the rule y=4x+5y=4x+5 to find yy values for x=1,2,4,7x=1, 2, 4, 7. Fill in the table with these results.

See Solution

Problem 11139

Use the function y=2x1y=2x-1 to find yy for x=2,5,6,7x=2, 5, 6, 7. Fill in the missing values.

See Solution

Problem 11140

Calculate the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=4xx+3f(x)=\frac{4 x}{x+3}, where h0h \neq 0.

See Solution

Problem 11141

Find the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=3x2f(x)=\frac{3}{x^{2}}, where h0h \neq 0.

See Solution

Problem 11142

Find the perimeter P\mathrm{P} of a rectangle as a function of width W\mathrm{W}, given length is 2W2\mathrm{W}.

See Solution

Problem 11143

Find the value of AA in f(x)=4x3+Ax2+5x5f(x)=4 x^{3}+A x^{2}+5 x-5 given that f(2)=9f(2)=9. A=A=\square

See Solution

Problem 11144

Revenue from selling xx hundred cell phones is R(x)=1.9x2+323xR(x)=-1.9x^2+323x. Cost is C(x)=0.09x32x2+75x+600C(x)=0.09x^3-2x^2+75x+600. Find profit P(x)=R(x)C(x)P(x)=R(x)-C(x), then compute P(25)P(25). Interpret P(25)P(25).

See Solution

Problem 11145

Complete the equation: (5.8×103Ncm)=2Nmm\left(-5.8 \times 10^{3} \frac{\mathrm{N}}{\mathrm{cm}}\right) \cdot \square=2 \frac{\mathrm{N}}{\mathrm{mm}}.

See Solution

Problem 11146

Solve the equation 14x73x+4=251 - 4x - 7 - 3x + 4 = 25.

See Solution

Problem 11147

Identify values equivalent to 10410^{-4}.

See Solution

Problem 11148

Find yy using m=10m=10, x=3x=3, and b=8b=8 in the equation y=mx+by=m x+b.

See Solution

Problem 11149

Find yy using the formula y=mxy=m x for m=8m=8 and x=7x=7.

See Solution

Problem 11150

Divide 3.42×10453.42 \times 10^{-45} by 1.8×10461.8 \times 10^{-46} and express the answer in scientific notation.

See Solution

Problem 11151

Given dydt=7y\frac{d y}{d t}=7 y and y(0)=450y(0)=450, determine y(t)y(t) y(t)=y(t)= \square

See Solution

Problem 11152

Determine whether the following equation defines yy as a function of xx. y=x+45y=\sqrt{x+45}
Does the equation y=x+45\mathrm{y}=\sqrt{\mathrm{x}+45} define y as a function of x ?

See Solution

Problem 11153

Problem 1. (1 point) 0205e5x+2ydxdy=\int_{0}^{2} \int_{0}^{5} e^{5 x+2 y} d x d y=\square (Give the exact value, not a decimal approximation)

See Solution

Problem 11154

Determine the present value PP you must invest to have the future value AA at simple interest rate r after time t . A=$4000.00,r=11.0%,t=39 weeks A=\$ 4000.00, r=11.0 \%, t=39 \text { weeks } \ \square$ (Round to the nearest cent.)

See Solution

Problem 11155

x2+(y+6)2=36x^{2}+(y+6)^{2}=36

See Solution

Problem 11156

Find an ordered pair (x,y)(x, y) that is a solution to the equation. 3x+y=5(x,y)=(,)\begin{array}{l} 3 x+y=5 \\ (x, y)=(\square, \square) \end{array}

See Solution

Problem 11157

Use an addition or subtraction formula to write the expression as a trigonometric function of one number: cos3π7cos2π21+sin3π7sin2π21=cosπA=B2\cos \frac{3 \pi}{7} \cos \frac{2 \pi}{21}+\sin \frac{3 \pi}{7} \sin \frac{2 \pi}{21}=\cos \frac{\pi}{A}=\frac{B}{2}. B=B=

See Solution

Problem 11158

Use an addition or subtraction formula to write the expression as a trigonometric functi tan73tan131+tan73tan13=tanA=B\frac{\tan 73^{\circ}-\tan 13^{\circ}}{1+\tan 73^{\circ} \tan 13^{\circ}}=\tan A^{\circ}=\sqrt{B} A = B=B= Submit Question

See Solution

Problem 11159

pago 34
Solution. (a) On a fX,Y(x,y)={10xy2,0xy10, ailleurs f_{X, Y}(x, y)=\left\{\begin{array}{c} 10 x y^{2}, 0 \leq x \leq y \leq 1 \\ 0, \text { ailleurs } \end{array}\right.  Pour 0<x<y<1, on a FX,Y(x,y)=0xuy10uv2dvdu=100xuuyv2 dv du=100xu(v33)uy du=100xu(y3u33)du=1030xy3uu4 du=103(y3u22u55)0x=103(y3x22x55)=53x2y323x5\begin{array}{l} \text { Pour } 0<x<y<1, \text { on a } \\ \begin{aligned} F_{X, Y}(x, y) & =\int_{0}^{x} \int_{u}^{y} 10 u v^{2} d v d u=10 \int_{0}^{x} u \int_{u}^{y} v^{2} \mathrm{~d} v \mathrm{~d} u \\ & =\left.10 \int_{0}^{x} u\left(\frac{v^{3}}{3}\right)\right|_{u} ^{y} \mathrm{~d} u=10 \int_{0}^{x} u\left(\frac{y^{3}-u^{3}}{3}\right) \mathrm{d} u \\ & =\frac{10}{3} \int_{0}^{x} y^{3} u-u^{4} \mathrm{~d} u=\left.\frac{10}{3}\left(y^{3} \frac{u^{2}}{2}-\frac{u^{5}}{5}\right)\right|_{0} ^{x} \\ & =\frac{10}{3}\left(y^{3} \frac{x^{2}}{2}-\frac{x^{5}}{5}\right) \\ & =\frac{5}{3} x^{2} y^{3}-\frac{2}{3} x^{5} \end{aligned} \end{array}

See Solution

Problem 11160

Indicate whether or not 510\frac{\sqrt{5}}{10} belongs to each set of numbers. \begin{tabular}{|cc|} \hline Belongs & \begin{tabular}{c} Does \\ Not \\ Belong \end{tabular} \\ Rational & - \\ Irrational & 0 \end{tabular}

See Solution

Problem 11161

5xy+2z=44x+9y5z=122x5y+z=2\begin{array}{l}-5 x-y+2 z=4 \\ 4 x+9 y-5 z=-12 \\ 2 x-5 y+z=2\end{array}

See Solution

Problem 11162

Solve the system by using the inverse of the coefficient matrix. 5xy+2z=44x+9y5z=122x5y+z=2\begin{array}{l} -5 x-y+2 z=4 \\ 4 x+9 y-5 z=-12 \\ 2 x-5 y+z=2 \end{array}

See Solution

Problem 11163

04p9+p2dp\int_{0}^{4} \frac{p}{\sqrt{9+p^{2}}} d p

See Solution

Problem 11164

Fractions Writing a mixed number as an improper fraction
Write 2232 \frac{2}{3} as an improper fraction.

See Solution

Problem 11165

Find the the domain of the function f(x)=x9x2+7x30f(x)=\frac{x-9}{x^{2}+7 x-30}. {xx30}\{x \mid x \neq 30\} {xx30}\{x \mid x \neq-30\} {xx9}\{x \mid x \neq-9\}

See Solution

Problem 11166

Question 1 (Multiple Choice Worth 5 points) (02.07 MC)
Given a function f(x)=2x2+3f(x)=2 x^{2}+3, what is the average rate of change of ff on the interval [2,2+h]?[2,2+h] ? 11 2h+82 h+8 2h2+8h2 h^{2}+8 h 2h2+8h+112 h^{2}+8 h+11

See Solution

Problem 11167

Convert the polar equation to rectangular form and identify the type of curve represented. r=8r=8
Part: 0 / 2
Part 1 of 2
The type of curve represented is a (Choose one)

See Solution

Problem 11168

Question 29
Given the function defined by f(x)=7x2f(x)=7 x-2, find f(5)f(-5). Simplify. f(5)=f(-5)= \square

See Solution

Problem 11169

For f(x)=4x+5f(x)=-4 x+5, find each value. Progress: 0/2
Part 1 of 2 (a) f(5)+2=f(5)+2=

See Solution

Problem 11170

Given the function defined by g(x)=x2+3x+3g(x)=-x^{2}+3 x+3, find g(2)g(-2). Simplify. g(2)=g(-2)= \square

See Solution

Problem 11171

1. (Section 10.4, Problem 10)
Find the Cartecian equation in terms of xx and yy x(t)=sint,y(t)=2+cos2tx(t)=\sin t, y(t)=2+\cos 2 t

See Solution

Problem 11172

Given the function defined by g(x)=3x27x+3g(x)=3 x^{2}-7 x+3, find g(2x)g(-2 x). Express the answer in simplest form. g(2x)=g(-2 x)=

See Solution

Problem 11173

Solve the rational equation. 2x34x+3=8x29\frac{2}{x-3}-\frac{4}{x+3}=\frac{8}{x^{2}-9} 8 6 5 6

See Solution

Problem 11174

Find the 82nd term of the arithmetic sequence 10,6,22,-10,6,22, \ldots

See Solution

Problem 11175

16. 3x8x7+2x17x\frac{3 x-8}{x-7}+\frac{2 x-1}{7-x}

See Solution

Problem 11176

Solve the exporential equation. Expresi irrational solutions as decimals correct to the vearest thovianath. 5x2=32x5^{x-2}=3^{2 x}
Select the correct choice A. The solution set is }\} B. empty set

See Solution

Problem 11177

4. Determine the domain of f(x)=ax+bnf(x)=\sqrt[n]{a x+b}, where nn is an odd positive integer. a) xbax \geq-\frac{b}{a} b) xbax \geq \frac{b}{a} c) baxba-\frac{b}{a} \leq x \leq \frac{b}{a} d) all real numbers

See Solution

Problem 11178

10. Determine the range of f(x)3=21xf(x)-3=-2 \sqrt{1-x} a) y2y \leq-2 b) y1y \leq 1 c) y2y \leq 2 d) y3y \leq 3

See Solution

Problem 11179

rational functions. y=x216x2+2x3y=\frac{x^{2}-16}{x^{2}+2 x-3}
If any of the following is none. Type none.
Vertical Asymptote/s: x or y \square \square and \square
Horizontal Asymptote/s: x or y \square \square
Hole/s in the graph: xx or yy \square \square
Domain all reals except: \square and \square

See Solution

Problem 11180

How many terms are in this series? * n=2918(0.1)n\sum_{n=2}^{9} 18(0.1)^{n}

See Solution

Problem 11181

16. Determine the value of f(x)f(x) when xx \rightarrow-\infty if f(x)=3x+22x+3f(x)=\frac{3 x+2}{2 x+3} a) 23-\frac{2}{3} b) 23\frac{2}{3} c) 1.5+1.5^{+} d) 1.51.5^{-}

See Solution

Problem 11182

6
Drag each system of equations to the correct location on the table.
Classify each system of equations as having a single solution, no solution, or infinite solutions. x+y=152xy=15\begin{array}{r} x+y=15 \\ 2 x-y=15 \end{array} \square

See Solution

Problem 11183

Select the correct answer.
What is the solution to this system of equations? 2t+w=104t=202w\begin{aligned} 2 t+w & =10 \\ 4 t & =20-2 w \end{aligned} A. It has no solution. B. It has infinite solutions C. It has a single solution: t=4,w=2t=4, w=2. D. It has a single solution: t=2,w=6t=2, w=6. E. It has a single solution: t=6,w=2t=6, w=-2.

See Solution

Problem 11184

Question 1 1 pts
Describe the vertical asymptotes and holes for the graph of y=x+7x2+5x14y=\frac{x+7}{x^{2}+5 x-14} If there are no asymtopotes or holes in the graph type none.
Verticlal Asymptotes: x or y \square == \square
Horizontal Asymptote: x or y \square == \square
Hole/s in the graph xx or yy \square \square

See Solution

Problem 11185

1910+27101 \frac{9}{10}+2 \frac{7}{10}

See Solution

Problem 11186

Divide. Check your answer by multiplying. 3 4 \longdiv { 8 6 7 }
Select the correct choice, and fill in the answer box(es) to complete your choice. A. The quotient is \square There is no remainder. (Type a whole number.) B. The quotient is \square R \square . (Type whole numbers:)

See Solution

Problem 11187

Find the quotient. 5 \longdiv { 9 6 } \square 5 \longdiv { 9 6 }

See Solution

Problem 11188

Add or subtract: 1+781+\frac{7}{8}.

See Solution

Problem 11189

Simplify. 4(3x4)3(x+5)4(3 x-4)-3(x+5)

See Solution

Problem 11190

Express in simplest radical form. (4x5)32\left(4 x^{5}\right)^{\frac{3}{2}}

See Solution

Problem 11191

Question 2
Less than 39\% of workers got their job through newspaper ads. Express the null and alternative hypotheses in symbolic form for this claim (enter as a percentage). H0:pH1:p\begin{array}{l} H_{0}: p \square \\ H_{1}: p \square \end{array}
Use the following codes to enter the following symbols:  enter >= enter <= enter !=\begin{array}{l} \geq \text { enter }>= \\ \leq \text { enter }<= \\ \neq \text { enter }!= \end{array}

See Solution

Problem 11192

Evaluate the definite integral 24x(x2)3dx\int_{2}^{4} x(x-2)^{3} d x (Enter a numerical value. Round your answer to 2 decimal places as needed.)

See Solution

Problem 11193

y12=17y-\frac{1}{2}=-\frac{1}{7}

See Solution

Problem 11194

Sports Beting and Onlin... Sports Betting Secret - www-awu.aleks.com Homework \& 4: 7(2,2,3,4)8(2,3,4)7(2,2,3,4) 8(2,3,4) Home - Northern Essex Content A Aleks - Jonathan Vcga... ChatGPT (5) Kaicenat - Twitch Question 18 of 40 (1 point) I Question Altempt: 1 of 3 Jonathan 14 15 16 17 =18=18 19 20 21\checkmark 21 22 23 24 Español 25>
Below, nn is the sample size, pp is the population proportion and p^\hat{p} is the sample proportion. Use the Central Limit Theorem and the TI-84 Plus calculator to find the probability. Round the answers to at least four decimal places. n=200p=0.10\begin{array}{l} n=200 \\ p=0.10 \end{array} P(p^<0.07)=0.785P(\hat{p}<0.07)=0.785^{\otimes} Check Save For Later Submit Assignment - 2024 McGraw Hill LLC. All Rights Reserved. Terms of Use I Privacy Center I Accessibility

See Solution

Problem 11195

oblem \#15: Consider the following integrals. (i) 062x1/4dx\int_{0}^{6} \frac{2}{x^{1 / 4}} d x (ii) 02x4dx\int_{0}^{\infty} \frac{2}{x^{4}} d x (iii) 04xdx\int_{0}^{\infty} 4^{x} d x (iv) 64xdx\int_{-\infty}^{6} 4^{x} d x
Determine if the above integrals Converge (1) or Diverge (2). So, for example, if you think that the answers, in the above order, are Converge,Diverge,Diverge,Converge then you would enter ' 1,2,2,11,2,2,1 ' into the answer box below (without the quotes).

See Solution

Problem 11196

Select all the correct systems of equations.
Which systems of equations have no solution? x+4y=233x=12y+1\begin{aligned} x+4 y & =23 \\ -3 x & =12 y+1 \end{aligned} 2x+y=174x=2y34\begin{aligned} 2 x+y & =17 \\ -4 x & =2 y-34 \end{aligned} 2x+4y=22x=2y11\begin{aligned} 2 x+4 y & =22 \\ -x & =2 y-11 \end{aligned} 3y=10x2x+6y=7\begin{aligned} 3 y & =10-x \\ 2 x+6 y & =7 \end{aligned} 2x+y=15x=152y\begin{aligned} 2 x+y & =15 \\ x & =15-2 y \end{aligned} y=132x4xy=1\begin{aligned} y & =13-2 x \\ 4 x-y & =-1 \end{aligned}

See Solution

Problem 11197

Find dy/dxd y / d x by implicit differentiation. dy/dx=sinx+cosy=sinxcosyd y / d x=\square \quad \sin x+\cos y=\sin x \cos y

See Solution

Problem 11198

Learn with an example or Watch a video
Find the yy-intercept of the line y=67x98y=\frac{6}{7} x-\frac{9}{8}. Write your answer as an integer or as a simplified proper or improper fraction, not as an ordered pair. \square Submit

See Solution

Problem 11199

Which point of intersection is the solution to the system of equations y=25x12y=\frac{2}{5} x-\frac{1}{2} and y=13x+23y=-\frac{1}{3} x+\frac{2}{3} ?

See Solution

Problem 11200

स5ा
Find the yy-intercept of the line y=x1y=x-1. Write your answer as an integer or as a simplified proper or improper fraction, not as an ordered pair. \square Submit Work it out Not feeling ready yet? This can help:

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord