Get Started for Free
Overview
Archive
Sign In
Math
Arithmetic
Fractions and Decimals
Measurement
Geometry
Word Problems
Algebra
Calculus
Statistics
Probability
Number Theory
Discrete Mathematics
Linear Algebra
Differential Equations
Trigonometry
Finance
Data
Graph
Diagram & Picture
Math Statement
Expression
Equation
Inequality
System
Matrix
Vector
Set
Function
Sequence
Series
Vector Space
Distribution
Solve
Simplify
Model
Prove
Analyze
Numbers & Operations
Data & Statistics
Discrete
Natural Numbers
Fractions
Decimals
Integers
Rationals
Percentages
Ratios & Proportions
Order of Operations
Linearity
Absolute Value
Quadratics
Rational
Exponents & Radicals
Polynomials
Exponentials
Logarithms
Matrices
Complex Numbers
Angles
Triangles
Circles
Congruence & Similarity
Pythagorean Theorem
Mensuration
Transformations
Coordinates
Data Collection & Representation
Measures of Central Tendency
Measures of Spread
Statistical Inference
Right Triangle
Non-Right Triangle
Unit Circle & Radians
Identities & Equations
Applications
Limits & Continuity
Derivatives
Integrals
Combinatorics
Word Problem
Sequences & Series
Archive
/
Math
Math Statement
Problem 11601
Solve the system: 63x - 14y = 14 and 72x - 16y = 16.
See Solution
Problem 11602
Find the value of
cos
(
0
∘
)
\cos(0^{\circ})
cos
(
0
∘
)
.
See Solution
Problem 11603
Find the value of
sec
18
0
∘
\sec 180^{\circ}
sec
18
0
∘
.
See Solution
Problem 11604
Find the value of
tan
90
0
∘
\tan 900^{\circ}
tan
90
0
∘
.
See Solution
Problem 11605
Find the value of
cos
180
0
∘
\cos 1800^{\circ}
cos
180
0
∘
.
See Solution
Problem 11606
(
2
3
×
4
)
3
−
2
\left(2^{\sqrt{3}} \times 4\right)^{\sqrt{3}-2}
(
2
3
×
4
)
3
−
2
의 값을 구하세요. (1)
1
4
\frac{1}{4}
4
1
(2)
1
2
\frac{1}{2}
2
1
(3) 1 (4) 2 (5) 4
See Solution
Problem 11607
Find the value of
csc
315
0
∘
\csc 3150^{\circ}
csc
315
0
∘
.
See Solution
Problem 11608
Solve
16
x
=
176
16x=176
16
x
=
176
to find the value of
x
x
x
.
See Solution
Problem 11609
Calculate the expression:
6
2
−
5
×
2
+
2
(
9
−
7
)
6^{2} - 5 \times 2 + 2(9 - 7)
6
2
−
5
×
2
+
2
(
9
−
7
)
. What is the result?
See Solution
Problem 11610
Calcula y simplifica: a)
(
2
3
−
1
2
⋅
4
15
)
‾
−
(
2
10
+
3
5
)
‾
(
2
3
+
4
9
)
−
7
⋅
(
3
5
⋅
10
7
−
2
5
)
\frac{\overline{\left(\frac{2}{3}-\frac{1}{2} \cdot \frac{4}{15}\right)}-\overline{\left(\frac{2}{10}+\frac{3}{5}\right)}}{\left(\frac{2}{3}+\frac{4}{9}\right)-7 \cdot\left(\frac{3}{5} \cdot \frac{10}{7}-\frac{2}{5}\right)}
(
3
2
+
9
4
)
−
7
⋅
(
5
3
⋅
7
10
−
5
2
)
(
3
2
−
2
1
⋅
15
4
)
−
(
10
2
+
5
3
)
See Solution
Problem 11611
Solve the system of equations: -2x + 5y - z = -5, 3x + 4y + 4z = -17, -x - 7y + 2z = 36.
See Solution
Problem 11612
Solve the system of equations: -5y + 3z = -13, 4x - z = -2, -7x + 9y = 5.
See Solution
Problem 11613
Evalúa
3
a
2
+
2
b
2
3 a^{2}+2 b^{2}
3
a
2
+
2
b
2
con
a
=
−
3
a=-3
a
=
−
3
y
b
=
6
b=6
b
=
6
.
See Solution
Problem 11614
Resuelve la suma:
3
8
+
3
8
=
\frac{3}{8}+\frac{3}{8}=
8
3
+
8
3
=
¿6/8, 3/4, 3/16 o 0?
See Solution
Problem 11615
Calcular:
−
39
−
(
−
23
)
=
-39 - (-23) =
−
39
−
(
−
23
)
=
See Solution
Problem 11616
Simplifique:
−
75
5
\frac{-75}{5}
5
−
75
See Solution
Problem 11617
Divide 2700 by 25 using long division.
See Solution
Problem 11618
Find values of
a
,
b
,
c
a, b, c
a
,
b
,
c
to satisfy:
1
6
÷
3
5
=
1
a
×
b
c
\frac{1}{6} \div \frac{3}{5}=\frac{1}{a} \times \frac{b}{c}
6
1
÷
5
3
=
a
1
×
c
b
. Options: a=6,b=5,c=3; a=6,b=3,c=5; a=1,b=3,c=6; a=1,b=5,c=3.
See Solution
Problem 11619
Find the quotient of
3
4
÷
1
8
\frac{3}{4} \div \frac{1}{8}
4
3
÷
8
1
by multiplying
4
3
\frac{4}{3}
3
4
by
1
8
\frac{1}{8}
8
1
.
See Solution
Problem 11620
Find the center, semi-major axis, semi-minor axis, and foci of the ellipse
x
2
9
+
y
2
25
=
1
\frac{x^{2}}{9}+\frac{y^{2}}{25}=1
9
x
2
+
25
y
2
=
1
.
See Solution
Problem 11621
Calculate to the correct significant figures:
7.1092
×
(
6.501
−
4.230
)
(
893.200
−
892.109
)
+
10.238701.
7.1092 \times \frac{(6.501-4.230)}{(893.200-892.109)}+10.238701.
7.1092
×
(
893.200
−
892.109
)
(
6.501
−
4.230
)
+
10.238701.
See Solution
Problem 11622
Solve for
x
x
x
in the equation
3
x
+
4
=
25
3 x + 4 = 25
3
x
+
4
=
25
.
See Solution
Problem 11623
The height of a plant is 1.6 times its age. Create an equation with
h
h
h
for height and
y
y
y
for age.
See Solution
Problem 11624
Solve for
s
s
s
in the equation
s
+
2.8
=
6.59
s + 2.8 = 6.59
s
+
2.8
=
6.59
.
See Solution
Problem 11625
Calculate
[
10
×
(
9
−
2
)
]
+
17
[10 \times(9-2)]+17
[
10
×
(
9
−
2
)]
+
17
.
See Solution
Problem 11626
Calculate the expression:
48
−
19
−
27
+
9
48 - 19 - 27 + 9
48
−
19
−
27
+
9
.
See Solution
Problem 11627
Calculate
18
÷
3
2
−
1
+
15
18 \div 3^{2} - 1 + 15
18
÷
3
2
−
1
+
15
.
See Solution
Problem 11628
If
A
B
≅
C
D
AB \cong CD
A
B
≅
C
D
, find
A
B
AB
A
B
when
A
B
=
2
x
+
5
AB = 2x + 5
A
B
=
2
x
+
5
and
C
D
=
4
x
−
3
CD = 4x - 3
C
D
=
4
x
−
3
.
See Solution
Problem 11629
Solve for
n
n
n
in the equation
81
3
=
3
n
81 \sqrt{3} = 3^{n}
81
3
=
3
n
.
See Solution
Problem 11630
Convert
2
x
=
3
2^{x}=3
2
x
=
3
to logarithmic form.
See Solution
Problem 11631
Solve
(
2
x
)
(
4
2
x
)
=
64
(2^{x})(4^{2x})=64
(
2
x
)
(
4
2
x
)
=
64
.
See Solution
Problem 11632
Solve
4
−
x
−
3
=
0
\sqrt{4-x}-3=0
4
−
x
−
3
=
0
.
See Solution
Problem 11633
−
7
2
×
(
−
3
)
+
4
×
(
−
5
2
)
-\frac{7}{2} \times(-3)+4 \times\left(-\frac{5}{2}\right)
−
2
7
×
(
−
3
)
+
4
×
(
−
2
5
)
의 값을 구하시오. (1) -1 (2)
−
1
2
-\frac{1}{2}
−
2
1
(3) 0 (4)
1
2
\frac{1}{2}
2
1
(5) 1
See Solution
Problem 11634
이차방정식
P
(
x
)
=
0
P(x)=0
P
(
x
)
=
0
의 두 근
α
,
β
\alpha, \beta
α
,
β
가 주어질 때,
α
+
β
α
β
\frac{\alpha+\beta}{\alpha \beta}
α
β
α
+
β
의 값을 구하시오. (단,
α
≠
β
\alpha \neq \beta
α
=
β
)
See Solution
Problem 11635
사차방정식
(
x
2
+
a
)
2
+
a
=
x
(x^{2}+a)^{2}+a=x
(
x
2
+
a
)
2
+
a
=
x
의 실근을 위한
a
a
a
의 최댓값은? (1)
−
3
4
-\frac{3}{4}
−
4
3
(2)
−
1
2
-\frac{1}{2}
−
2
1
(3) 0 (4)
1
4
\frac{1}{4}
4
1
(5) 1
See Solution
Problem 11636
Solve for
y
y
y
in the equation:
−
2
y
−
6
=
−
3
x
-2y - 6 = -3x
−
2
y
−
6
=
−
3
x
.
See Solution
Problem 11637
Solve the equation
3
x
−
1
5
−
2
9
x
=
124
5
3 x - \frac{1}{5} - \frac{2}{9} x = \frac{124}{5}
3
x
−
5
1
−
9
2
x
=
5
124
. Simplify by combining like terms.
See Solution
Problem 11638
Identify which statements are correct:
I:
(
log
2
x
)
1
2
=
1
2
log
2
x
(\log_{2} x)^{\frac{1}{2}}=\frac{1}{2} \log_{2} x
(
lo
g
2
x
)
2
1
=
2
1
lo
g
2
x
II:
log
3
x
log
3
y
=
log
3
x
−
log
3
y
\frac{\log_{3} x}{\log_{3} y}=\log_{3} x-\log_{3} y
l
o
g
3
y
l
o
g
3
x
=
lo
g
3
x
−
lo
g
3
y
III:
log
5
(
x
y
2
)
=
log
5
x
+
2
log
5
y
\log_{5}(x y^{2})=\log_{5} x+2 \log_{5} y
lo
g
5
(
x
y
2
)
=
lo
g
5
x
+
2
lo
g
5
y
See Solution
Problem 11639
Simplify:
(
2
a
4
b
)
2
×
6
(
a
b
0
)
2
a
(
3
b
5
)
0
×
(
2
a
2
)
3
\frac{\left(2 a^{4} b\right)^{2} \times 6\left(a b^{0}\right)^{2}}{a\left(3 b^{5}\right)^{0} \times\left(2 a^{2}\right)^{3}}
a
(
3
b
5
)
0
×
(
2
a
2
)
3
(
2
a
4
b
)
2
×
6
(
a
b
0
)
2
See Solution
Problem 11640
Solve the equation
3
x
−
1
5
−
2
9
x
=
124
5
3x - \frac{1}{5} - \frac{2}{9}x = \frac{124}{5}
3
x
−
5
1
−
9
2
x
=
5
124
. Combine like terms and isolate
x
x
x
.
See Solution
Problem 11641
Solve the equation
3.4
+
2
(
9.7
−
4.8
x
)
=
61.2
3.4+2(9.7-4.8 x)=61.2
3.4
+
2
(
9.7
−
4.8
x
)
=
61.2
. Which steps apply? Distribute, combine, divide, or subtract?
See Solution
Problem 11642
Find the range of values for
a
a
a
such that the line
y
=
2
x
−
a
2
2
y=2x-\frac{a^{2}}{2}
y
=
2
x
−
2
a
2
intersects the curve
y
=
x
2
−
a
x
−
4
y=x^{2}-ax-4
y
=
x
2
−
a
x
−
4
at two distinct points.
See Solution
Problem 11643
Solve for
x
x
x
in the equation
4
7
=
44
x
\frac{4}{7} = \frac{44}{x}
7
4
=
x
44
.
See Solution
Problem 11644
Trova il periodo della funzione
y
=
sin
2
3
x
y=\sin \frac{2}{3} x
y
=
sin
3
2
x
.
See Solution
Problem 11645
Solve the equation
log
9
(
2
+
x
)
=
log
16
4
−
log
1
3
1
−
2
x
\log _{9}(2+x)=\log _{16} 4-\log _{\frac{1}{3}} \sqrt{1-2 x}
lo
g
9
(
2
+
x
)
=
lo
g
16
4
−
lo
g
3
1
1
−
2
x
.
See Solution
Problem 11646
Rationalize the denominator of:
4
3
−
7
\frac{4}{3-\sqrt{7}}
3
−
7
4
.
See Solution
Problem 11647
Solve for
x
x
x
in the equation
log
9
(
2
+
x
)
=
log
16
4
−
log
1
1
−
2
x
\log _{9}(2+x)=\log _{16} 4-\log _{1} \sqrt{1-2 x}
lo
g
9
(
2
+
x
)
=
lo
g
16
4
−
lo
g
1
1
−
2
x
.
See Solution
Problem 11648
Solve the inequality:
10
∣
7
x
+
7
∣
+
10
≥
80
10|7x + 7| + 10 \geq 80
10∣7
x
+
7∣
+
10
≥
80
.
See Solution
Problem 11649
Solve these equations: (a)
log
5
x
+
1
=
2
log
x
5
\log _{5} x+1=2 \log _{x} 5
lo
g
5
x
+
1
=
2
lo
g
x
5
, (b)
log
9
(
2
+
x
)
=
log
16
4
−
log
1
3
1
−
2
x
\log _{9}(2+x)=\log _{16} 4-\log _{\frac{1}{3}} \sqrt{1-2 x}
lo
g
9
(
2
+
x
)
=
lo
g
16
4
−
lo
g
3
1
1
−
2
x
.
See Solution
Problem 11650
Simplify the expression
(
−
2
x
)
(
−
3
y
)
+
(
2
y
)
(
−
4
x
)
(-2 x)(-3 y)+(2 y)(-4 x)
(
−
2
x
)
(
−
3
y
)
+
(
2
y
)
(
−
4
x
)
.
See Solution
Problem 11651
Find the inverse of the function
f
(
x
)
=
1
1
+
2
x
f(x)=\frac{1}{1+2x}
f
(
x
)
=
1
+
2
x
1
.
See Solution
Problem 11652
Calculate
(
−
5
x
)
(
−
3
y
)
−
(
2
x
)
(
−
3
y
)
(-5 x)(-3 y)-(2 x)(-3 y)
(
−
5
x
)
(
−
3
y
)
−
(
2
x
)
(
−
3
y
)
.
See Solution
Problem 11653
Fill in the blanks to make these equations true, assuming
S
S
S
is nonzero:
12.
(
a
3
b
4
)
□
=
a
6
b
□
\left(a^{3} b^{4}\right) \square=a^{6} b \square
(
a
3
b
4
)
□
=
a
6
b
□
13.
(
r
q
s
3
)
2
=
r
10
s
\left(\frac{r q}{s^{3}}\right)^{2}=\frac{r^{10}}{s}
(
s
3
r
q
)
2
=
s
r
10
14.
(
□
×
1
0
3
)
2
=
9
×
10
□
\left(\square \times 10^{3}\right)^{2}=9 \times 10 \square
(
□
×
1
0
3
)
2
=
9
×
10
□
See Solution
Problem 11654
Factor the following expressions:
11.
6
a
−
48
6 a-48
6
a
−
48
13.
12
c
−
28
d
+
52
12 c-28 d+52
12
c
−
28
d
+
52
15.
14
f
3
+
42
f
5
−
77
f
7
14 f^{3}+42 f^{5}-77 f^{7}
14
f
3
+
42
f
5
−
77
f
7
17.
42
j
2
k
−
78
j
k
3
+
66
j
3
k
4
42 j^{2} k-78 j k^{3}+66 j^{3} k^{4}
42
j
2
k
−
78
j
k
3
+
66
j
3
k
4
19.
−
8
p
3
q
−
16
p
2
−
p
8
q
-8 p^{3} q-16 p^{2}-p^{8} q
−
8
p
3
q
−
16
p
2
−
p
8
q
21.
5
t
4
u
+
k
t
3
u
2
−
10
t
4
5 t^{4} u+k t^{3} u^{2}-10 t^{4}
5
t
4
u
+
k
t
3
u
2
−
10
t
4
23.
64
w
2
x
+
28
w
4
x
−
72
w
3
x
64 w^{2} x+28 w^{4} x-72 w^{3} x
64
w
2
x
+
28
w
4
x
−
72
w
3
x
25.
36
x
3
−
42
y
4
+
24
z
36 x^{3}-42 y^{4}+24 z
36
x
3
−
42
y
4
+
24
z
27.
85
c
d
4
−
60
c
3
d
2
+
95
c
d
85 c d^{4}-60 c^{3} d^{2}+95 c d
85
c
d
4
−
60
c
3
d
2
+
95
c
d
29.
g
2
b
3
j
2
+
g
3
h
k
2
−
b
7
k
3
m
g^{2} b^{3} j^{2}+g^{3} h k^{2}-b^{7} k^{3} m
g
2
b
3
j
2
+
g
3
h
k
2
−
b
7
k
3
m
31.
459
x
−
621
459 x-621
459
x
−
621
33.
161
−
460
x
161-460 x
161
−
460
x
35.
8
a
c
−
2
a
d
+
4
b
c
−
b
d
8 a c-2 a d+4 b c-b d
8
a
c
−
2
a
d
+
4
b
c
−
b
d
37.
2
m
2
n
+
2
r
n
+
4
m
2
p
+
4
r
p
2 m^{2} n+2 r n+4 m^{2} p+4 r p
2
m
2
n
+
2
r
n
+
4
m
2
p
+
4
r
p
39.
a
2
c
2
−
b
2
c
2
−
4
a
2
d
2
+
4
b
2
d
2
a^{2} c^{2}-b^{2} c^{2}-4 a^{2} d^{2}+4 b^{2} d^{2}
a
2
c
2
−
b
2
c
2
−
4
a
2
d
2
+
4
b
2
d
2
41.
k
3
+
k
2
+
k
+
1
k^{3}+k^{2}+k+1
k
3
+
k
2
+
k
+
1
43.
u
3
+
2
u
2
+
u
+
2
u^{3}+2 u^{2}+u+2
u
3
+
2
u
2
+
u
+
2
See Solution
Problem 11655
Simplify the expression:
−
4
x
(
−
3
y
−
7
z
+
2
x
)
+
3
y
(
2
x
+
y
)
-4 x(-3 y-7 z+2 x)+3 y(2 x+y)
−
4
x
(
−
3
y
−
7
z
+
2
x
)
+
3
y
(
2
x
+
y
)
.
See Solution
Problem 11656
Solve for
x
x
x
in the equation
10
x
−
1
=
15
−
6
x
10 x - 1 = 15 - 6 x
10
x
−
1
=
15
−
6
x
.
See Solution
Problem 11657
Determine the period of the function
y
=
2
cos
2
x
+
sin
x
y=2 \cos 2x + \sin x
y
=
2
cos
2
x
+
sin
x
.
See Solution
Problem 11658
Find the limit as
x
x
x
approaches
11
10
\frac{11}{10}
10
11
from the right:
lim
x
→
11
10
+
(
15
x
11
−
10
x
)
\lim _{x \rightarrow \frac{11}{10}^{+}}\left(\frac{15 x}{11-10 x}\right)
lim
x
→
10
11
+
(
11
−
10
x
15
x
)
.
See Solution
Problem 11659
Express
a
a
a
in terms of
y
y
y
,
z
z
z
, and
x
x
x
from the equation
a
x
+
y
=
z
a x + y = z
a
x
+
y
=
z
.
See Solution
Problem 11660
Simplify the expression:
(
3
x
)
2
(3 x)^{2}
(
3
x
)
2
.
See Solution
Problem 11661
Determine the slope and y-intercept of the equation
y
=
2
x
−
3
y=2x-3
y
=
2
x
−
3
.
See Solution
Problem 11662
Simplify the expression
(
x
−
11
)
−
3
\left(x^{-11}\right)^{-3}
(
x
−
11
)
−
3
.
See Solution
Problem 11663
Solve for
x
x
x
and
y
y
y
in the equation
2
x
+
4
y
=
12
2x + 4y = 12
2
x
+
4
y
=
12
by isolating the variables.
See Solution
Problem 11664
Solve the equation:
(
y
+
3
)
=
−
2
(
x
−
5
)
(y+3)=-2(x-5)
(
y
+
3
)
=
−
2
(
x
−
5
)
.
See Solution
Problem 11665
Simplify the expression:
7
x
−
2
(
3
x
−
4
)
+
11
7x - 2(3x - 4) + 11
7
x
−
2
(
3
x
−
4
)
+
11
See Solution
Problem 11666
Find the significant figures in the measurement
6.733000
6.733000
6.733000
.
See Solution
Problem 11667
Find the significant figures in the measurement
0.00230
0.00230
0.00230
.
See Solution
Problem 11668
Identify the polynomial type:
3
x
2
3 x^{2}
3
x
2
(monomial, binomial, or trinomial).
See Solution
Problem 11669
Verifica se le funzioni
y
=
1
+
x
2
4
−
x
2
y=\frac{1+x^{2}}{4-x^{2}}
y
=
4
−
x
2
1
+
x
2
e
y
=
x
2
−
2
3
x
4
y=\frac{x^{2}-2}{3 x^{4}}
y
=
3
x
4
x
2
−
2
sono pari.
See Solution
Problem 11670
1 rad equals how many quads if 1 plug = 4 quads and 3 plugs = 8 rads? A.
1
12
\frac{1}{12}
12
1
B.
3
32
\frac{3}{32}
32
3
C.
1
2
\frac{1}{2}
2
1
D.
2
3
\frac{2}{3}
3
2
E.
3
2
\frac{3}{2}
2
3
See Solution
Problem 11671
Solve the expression:
−
7
x
−
2
(
3
x
−
4
)
+
11
-7 x - 2(3 x - 4) + 11
−
7
x
−
2
(
3
x
−
4
)
+
11
.
See Solution
Problem 11672
Find the leading coefficient of the polynomial
4
y
2
+
3
y
3
−
2
−
y
4y^2 + 3y^3 - 2 - y
4
y
2
+
3
y
3
−
2
−
y
.
See Solution
Problem 11673
If
f
:
R
→
R
f: \mathbb{R} \to \mathbb{R}
f
:
R
→
R
and
f
(
X
)
=
3
f(X)=3
f
(
X
)
=
3
, find
f
(
6
)
f
(
0
)
\frac{f(6)}{f(0)}
f
(
0
)
f
(
6
)
. Options: 6, 1, 3, 0.
See Solution
Problem 11674
Find the value of
c
\mathrm{c}
c
for the function
f
(
χ
)
=
2
χ
+
3
c
3
f(\chi)=2 \chi+3 \mathrm{c}^{3}
f
(
χ
)
=
2
χ
+
3
c
3
that passes through the origin.
See Solution
Problem 11675
Find the point where the line
f
(
χ
)
=
2
χ
−
1
f(\chi)=2 \chi-1
f
(
χ
)
=
2
χ
−
1
intersects the
y
\mathrm{y}
y
-axis from these options: (0,1), (0,-1), (1,0), (-1,0).
See Solution
Problem 11676
Find the value of
a
\mathrm{a}
a
if the point
(
a
,
3
)
(\mathrm{a}, 3)
(
a
,
3
)
is on the line
f
(
χ
)
=
4
χ
−
5
f(\chi)=4 \chi-5
f
(
χ
)
=
4
χ
−
5
.
See Solution
Problem 11677
Is
x
=
6
x=6
x
=
6
a solution to
3
x
+
8
=
56
3x + 8 = 56
3
x
+
8
=
56
? If
x
x
x
changes to
9
9
9
, what must the right side change to?
See Solution
Problem 11678
If
f
(
X
)
=
x
2
f(X)=x^{2}
f
(
X
)
=
x
2
for
x
∈
[
−
2
,
2
]
x \in[-2,2]
x
∈
[
−
2
,
2
]
, what is the range of
f
(
X
)
f(X)
f
(
X
)
?
See Solution
Problem 11679
Estimate
19
\sqrt{19}
19
to one decimal place. It lies between which two whole numbers?
See Solution
Problem 11680
Solve for
x
x
x
in the equation:
4
x
=
6
4
3
x
+
1
4^{x}=64^{3x+1}
4
x
=
6
4
3
x
+
1
using Desmos.
See Solution
Problem 11681
Find the range of
f
(
x
)
=
x
2
f(x)=x^{2}
f
(
x
)
=
x
2
for
x
∈
[
−
2
,
2
]
x \in[-2,2]
x
∈
[
−
2
,
2
]
. What values does
f
(
x
)
f(x)
f
(
x
)
take?
See Solution
Problem 11682
Solve
5
x
=
15
x
+
20
\frac{5}{x}=\frac{15}{x+20}
x
5
=
x
+
20
15
. Find the value of
x
5
\frac{x}{5}
5
x
. A) 10 B) 5 C) 2 D)
1
2
\frac{1}{2}
2
1
See Solution
Problem 11683
Solve:
6
x
=
6
3
x
−
12
6^{x}=6^{3x-12}
6
x
=
6
3
x
−
12
. Find
x
x
x
from the options:
−
1
-1
−
1
,
6
6
6
,
−
2
-2
−
2
,
3
3
3
.
See Solution
Problem 11684
Solve the system of equations:
−
5
y
+
3
z
=
−
13
-5y + 3z = -13
−
5
y
+
3
z
=
−
13
,
4
x
−
z
=
−
2
4x - z = -2
4
x
−
z
=
−
2
,
−
7
x
+
9
y
=
5
-7x + 9y = 5
−
7
x
+
9
y
=
5
.
See Solution
Problem 11685
Find the intersection of the lines defined by
y
=
x
−
4
y=x-4
y
=
x
−
4
and
y
=
−
x
+
6
y=-x+6
y
=
−
x
+
6
.
See Solution
Problem 11686
Find the explicit formula for the sequence: 15, 19, 23, 27, ...
See Solution
Problem 11687
Solve for
x
x
x
in the equation
2
x
+
1
=
9
2 x + 1 = 9
2
x
+
1
=
9
.
See Solution
Problem 11688
Find the recursive formula for the sequence: 15, 19, 23, 27, ...
See Solution
Problem 11689
Find the recursive formula for the sequence where
a
1
=
−
1
a_{1}=-1
a
1
=
−
1
and
d
=
−
10
d=-10
d
=
−
10
.
See Solution
Problem 11690
Find the explicit formulas for the sequences with:
9.
a
1
=
−
1
a_1 = -1
a
1
=
−
1
,
d
=
−
10
d = -10
d
=
−
10
10.
a
1
=
−
3
a_1 = -3
a
1
=
−
3
,
d
=
−
9
d = -9
d
=
−
9
See Solution
Problem 11691
Find the explicit formula for the sequence with
a
1
=
−
1
a_{1}=-1
a
1
=
−
1
and common difference
d
=
−
10
d=-10
d
=
−
10
.
See Solution
Problem 11692
Simplify the unit
7.3
g
⋅
c
m
c
m
2
⋅
c
m
2
7.3 \frac{\mathrm{g} \cdot \mathrm{cm}}{\mathrm{cm}^{2} \cdot \mathrm{cm}^{2}}
7.3
cm
2
⋅
cm
2
g
⋅
cm
to its simplest form.
See Solution
Problem 11693
Find
F
′
(
x
)
F^{\prime}(x)
F
′
(
x
)
using the first principle if
F
(
x
)
=
x
2
−
3
x
F(x)=x^{2}-3x
F
(
x
)
=
x
2
−
3
x
.
See Solution
Problem 11694
Write the number 30000 in scientific notation.
See Solution
Problem 11695
Calculate the value of
−
4.05
×
1
0
−
1
3.00
×
1
0
4
\frac{-4.05 \times 10^{-1}}{3.00 \times 10^{4}}
3.00
×
1
0
4
−
4.05
×
1
0
−
1
and express it in scientific notation.
See Solution
Problem 11696
Calculate the average rate of change of
h
(
t
)
=
cot
t
h(t)=\cot t
h
(
t
)
=
cot
t
over the intervals: a.
[
3
π
4
,
5
π
4
]
\left[\frac{3 \pi}{4}, \frac{5 \pi}{4}\right]
[
4
3
π
,
4
5
π
]
, b.
[
5
π
6
,
3
π
2
]
\left[\frac{5 \pi}{6}, \frac{3 \pi}{2}\right]
[
6
5
π
,
2
3
π
]
.
See Solution
Problem 11697
Find the limits: 1)
lim
x
→
3
x
2
−
9
x
2
−
3
x
\lim _{x \rightarrow 3} \frac{x^{2}-9}{x^{2}-3 x}
lim
x
→
3
x
2
−
3
x
x
2
−
9
2)
lim
x
→
3
3
x
4
−
6
x
+
12
x
5
+
4
x
3
\lim _{x \rightarrow 3} \frac{3 x^{4}-6 x+12}{x^{5}+4 x^{3}}
lim
x
→
3
x
5
+
4
x
3
3
x
4
−
6
x
+
12
See Solution
Problem 11698
Find the average rate of change of
h
(
t
)
=
cot
t
h(t)=\cot t
h
(
t
)
=
cot
t
over
[
5
π
6
,
3
π
2
]
\left[\frac{5 \pi}{6}, \frac{3 \pi}{2}\right]
[
6
5
π
,
2
3
π
]
.
See Solution
Problem 11699
Find the sum of
5
x
−
2
+
3
x
5x - 2 + 3x
5
x
−
2
+
3
x
and
5
(
7
−
x
)
5(7 - x)
5
(
7
−
x
)
.
See Solution
Problem 11700
Solve for
h
h
h
:
6
h
+
7
−
10
h
=
2
h
−
23
6 h + 7 - 10 h = 2 h - 23
6
h
+
7
−
10
h
=
2
h
−
23
See Solution
<
1
...
114
115
116
117
118
119
120
...
270
>
Start learning now
Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.
Download on the
App Store
Get it on
Google Play
Parents
Influencer program
Contact
Policy
Terms