The following question is taken from a Practice SAT test on the NonCalculator section. The graph of y=2x2+10x+12 is shown. If the graph crosses the y-axis at the point (0,k), what is the value of k ?
12
2
10
6
horizontal
1.10 A stunt rider is propelled upward from his motorbike by a spring loaded ejector seat. The rider was travelling horizontally at 60kmh−1 when the ejector seat was triggered, and as they leave the seat they are travelling with a vertical velocity of 15ms−1. The seat is 1.0 m off the ground.
(a) What is the initial velocity of the stunt rider (in kmh−1 )?
(b) How high does the stunt rider reach?
(c) How far along the track does the stunt rider land on the ground?
(d) What is the velocity of the stunt rider when they hit the ground (in kmh−1 )? Answer: (a) 81kmh−1,42∘ above the horizontal (b) 12 m (c) 51 m (d) 82kmh−1,43∘ below the horizontal
1.11 A bullet is fired horizontally from a gun that is 1.5 m from the ground. The bullet travels at 1000ms−1 and strikes a tree 150 m
The equations of three lines are given below.
Line 1: y=32x+7
Line 2: 3y=2x+5
Line 3: 4x−6y=8 For each pair of lines, determine whether they are parallel, perpendicular, or neither.
Line 1 and Line 2: Parallel Perpendicular Neither
Line 1 and Line 3: Parallel Perpendicular Neither
Line 2 and Line 3: Parallel Perpendicular Neither
The equations of three lines are given below.
Line 1: y=−2x−8
Line 2: 3x−6y=−6
Line 3: y=−2x+1 For each pair of lines, determine whether they are parallel, perpendicular, or neith Line 1 and Line 2 : Parallel Perpendicular Neither
Line 1 and Line 3: Parallel Perpendicular Neither
Line 2 and Line 3 : Parallel Perpendicular Neither
Which intercepts will help you find the roots of the equation if 3x+4=−2 ? Select one:
a. x-intercepts of the graph of the function y=3x+4−2
b. x-intercepts of the graph of the function y=3x+4+2
c. y-intercepts of the graph of the function y=3x+4−2
d. y-intercepts of the graph of the function y=3x+4+2
Point S is the midpoint of line RT. RS is 3x+20 and RT is 12x−10. What is the length of RS? Round your answer to the nearest hundredth if necessary.
Your Answer: Answer Question 3 (2 points)
(c) At the school across the street, 127 of the students like neither superhero nor s This represents 189 members of the student body. Set up and solve an calculate the total number of students, T, that go to this school.
in Louisiana have a 10% sales tax. Talal buys a coat for $45
3. Two horizontal forces act on a 5.0−kg mass. One force has a magnitude of 8.0 N and is directed due north. The second force toward the east has a magnitude of 6.0 N . What is the acceleration of the mass?
A) 1.6m/s2 due north
B) 1.2m/s2 due east
C) 2.0m/s2 at 53 e N of E ㅇ) 2.0m/s2 at 53mE of N
Which of the following illustrates the commutative property of multiplication? Enter a, b, c, d, or e.
a. zy=yz
b. a+(c+d)=(a+c)+d
c. y+a=a+y
d. (db)(e+f)=d[b(e+f)]
e. (ac+de)(ef)=(de+ac)(ef)
8 Abiturprüfung 2011 (Bayern), Analysis, Aufgabengruppe I, Teil 1, Aufgabe 3
Die Anzahl der auf der Erde lebenden Menschen wuchs von 6,1 Milliarden zu Beginn des Jahres 2000 auf 6,9 Milliarden zu Beginn des Jahres 2010. Dieses Wachstum lässt sich näherungsweise durch eine Exponentialfunktion mit einem Term der Form N(x)=N0⋅ek⋅(x−2000) beschreiben, wobei N(x) die Anzahl der Menschen zu Beginn des Jahres x ist. Bestimmen Sie N0 und k.
Die Anzahl der auf der Erde lebenden Menschen wuchs von 6,1 Milliarden zu Beginn des Jahres 2000 auf 6,9 Milliarden zu Beginn des Jahres 2010. Dieses Wachstum lässt sich näherungsweise durch eine Exponentialfunktion mit einem Term der Form N(x)=N0⋅ek⋅(x−2000) beschreiben, wobei N(x) die Anzahl der Menschen zu Beginn des Jahres x ist. Bestimmen Sie N0 und k.
2. (4 punti) Una gru, il cui motore ha una potenza di 3,00kW, solleva di 10,4m, a velocità costante, un carico che ha massa di 359 kg . Calcola il tempo impiegato dalla gru per sollevare il carico.
11 Bei dem Reaktorunfall in Tschernobyl am 26. April 1986 wurde u.a. radioaktives Cäsium-137 freigesetzt. Cäsium-137 zerfällt exponentiell mit einer Halbwertszeit von ca. 30 Jahren. Über der damaligen Bundesrepublik Deutschland hatten sich nach Angaben der Gesellschaft für Strahlenund Umweltforschung etwa 230 Gramm radioaktives Cäsium-137 abgelagert, ein Großteil davon in Bayern.
a) Beschreiben Sie den Zerfall dieser Menge Cäsium-137 durch eine Funktion f:t↦b⋅ekt ( t in Jahren und f(t) in Gramm).
b) Geben Sie die Bedeutung des Faktors b im Sachzusammenhang an und berechnen Sie den prozentualen Anteil, um den die Masse des Cäsium-137 jedes Jahr abnimmt.
c) Berechnen Sie, nach welcher Zeit weniger als ein Gramm des Cäsium-137 übrig ist.
d) Bestimmen Sie die Funktion der Wachstumsgeschwindigkeit für die gegebene Menge Cäsi-um-137. Berechnen Sie die Wachstumsgeschwindigkeit zu Beginn und zum heutigen Zeitpunkt. Beschreiben Sie die Werte im Sachzusammenhang.
Simplify. Assume that the variable represents any real number.
19x19 Select the correct choice below and, if necessary, fill in the answer box within your choice.
A. 19x19=□
B. The root does not represent a real number.
Simplify the radical. Assume that the variable represents a positive real number.
416x12 Select the correct choice below and, if necessary, fill in the answer box to complete your choice.
A. 416x12=□
(Simplify your answer. Use integers or fractions for any numbers in the expression.)
B. The radical does not represent a real number.
Use radical notation to rewrite the expression. Simplify if possible
161/2 Select the correct choice below and, if necessary, fill in the answer box to complete your choice
A. 161/2=□ (Simplify your answer. Type an exact answer, using radicals as needed.)
B. The answer is not a real number.
How many years are required for an investment to double in value if it is appreciating at the rate of 11% compounded continuously? At 11\% compounded continuously, the investment doubles in □ years.
(Round to one decimal place as needed.)
Factor the given factor from the expression.
x52;x52+x54x52+x54=□□
(Type your answer in factored form. Type your answer using exponential notation. Use integers or fractions for any numbers in the expression.)
Factor the given factor from the expression.
x91;x92−5x91x92−5x91=□□
(Type your answer in factored form. Type your answer using exponential notation. Use integers or fractions for any numbers in the expression.)
How much money must you invest now at 4.1% interest compounded continuously in order to have $10,000 at the end of 4 years? You must invest \\square$
(Round to the nearest cent as needed.)
Use the graph of the function to answer the question.
(s) 2017 StrongMind. Created using GeoGebra. What is the output of the function when the input is 0 ?
Enter your answer as a number, like this: 42
13. A function f(x) is one-to-one. If the graph of f−1(x) lies in the fourth quadrant. In which quadrant does the graph of f(x) lie?
A. First Quadrant
B. Second Quadrant
b) Given the graph of the function h(x). graph h−1(x)
C. Third Quadrant
D. Fourth Quadrant
Let A(t)=4000e0.06t be the balance in a savings account after t years. Complete parts (a) through (f) below.
(a) How much money was originally deposited? There was $□ originally deposited.
(Type an integer or a decimal.)
Let A(t)=4000e0.06t be the balance in a savings account after t years. Complete parts (a) through (f) below.
(a) How much money was originally deposited? There was \$ 4000 originally deposited.
(Type an integer or a decimal.)
(b) What is the interest rate? The interest rate is □%.
(Type an integer or a decimal.)
Jerome wants to rent a rowboat to go fishing at the lake. The cost of the rental can be represented by the equation y=18x, where x is the number of hours the boat is rented for, and y is the total cost. What is the cost per hour for renting the boat?
There is no cost per hour, because the value for b in the slope-intercept form of the equation y=mx+b equals 0 . It costs $18 to rent the boat all day.
Renting the boat costs $0.18 per hour.
The cost per hour can't be determined without determining the number of hours it is used.
Renting the boat costs $18 per hour.
Examine the input-output table, which contains some of the ordered pairs of a linear function.
\begin{tabular}{|c|c|}
\hline Input (x) & Output (y) \\
\hline-4 & 4 \\
\hline-2 & 1 \\
\hline 0 & -2 \\
\hline 4 & -5 \\
\hline
\end{tabular} What is the initial value of the function?
−4−2
0
4
6x2=−x Select the correct choice below and, if necessary, fill in the ans
A. The solution set is □ \}.
(Simplify your answer. Use a comma to separate answ
B. The scifution set is ∅.
Consider the weighted Euclidean inner product defined by <u,v>=7u1v1+6u2v2+4u3v3. The generating matrix for this inner product is given by A=⎣⎡700060002⎦⎤
True
False
Consider the weighted Euclidean inner product defined by ⟨u,v⟩=3u1v1+7u2v2+4u3v3. The generating matrix for this inner product is given by A=⎣⎡300070002⎦⎤.
True
False
Consider the weighted Euclidean inner product defined by <u,v>=3u1v1+7u2v2+4u3v3. The generating matrix for this inner product is given by A=⎣⎡300070002⎦⎤
True
False
Consider the inner product on M22 defined by <U,V>=u1v1+u2v2+u3v3+u4v4 where U=[u1u3u2u4] and V=[v1v3v2v4]. Using this inner product, the matrices [−1−5475] and [251−4] are orthogonal. True
False
Question 50
The temperature of a nuclear reactor rises at a steady rate of 100 degrees per minute, while the temperature of a thermal reactor doubles every minute. Given that the starting temperatures of the nuclear reactor and the thermal reactor are 400 degrees and 15 degrees, respectively, after how many whole minutes will the temperature of the thermal reactor exceed that of the nuclear reactor? Marks:1.0 Negative Marks: 0.25
3. Risolvi l'equazione parametrica: mx+3=nx−2, dove m e n sono parametri. 4. Trova x se 21x+p=qx+2q, con p e q come parametri. 5. Risolvi l'equazione parametrica: rx−4=sx+6, dove r e s sono costanti. 6. Trova x se 2x−p=qx+p, con p e q parametri.
Consider the following lines.
Line 1: 3x−4y=12
Line 2: a line perpendicular to 3x−4y=12 that contains the point (3,−4)
Write the equation of Line 1 in slope-intercept form.
□
Find the slope of Line 1.
□
Find the slope of Line 2.
□
Find the equation of Line 2 in point-slope form using the point (3,−4).
□
Find the equation of Line 2 in the form Ax+By=C.
□
Need Help?
Read It
Consider the following lines.
Line 1: 3x−4y=12
Line 2: a line perpendicular to 3x−4y=12 that contains the point (3,−4)
Write the equation of Line 1 in slope-intercept form.
□
Find the slope of Line 1.
□
2 Ein Betrieb stellt ein Produkt mit den Inputfaktoren x (in ME) und y ( Output soll 1000 ME betragen. Die Faktormengenkombinationen, die zu diesem Output führen, lassen sich mit der Isoquantengleichung y(x)=x−240+3 beschreiben. Bei einem Kostenbudget in Höhe von 730 GE lautet die Gleichung der Isokostengeraden y(x)=−10x+73, bei einem Kostenbudget von 550 GE lautet sie y(x)=−10x+55.
a) Untersuchen Sie, ob sich mit diesen Kostenbudgets der angestrebte Output erzielen lässt. Geben Sie ggf. die Kombinationsmengen der Inputfaktoren an.
b) Berechnen Sie die Minimalkostenkombination.
c) Bestimmen Sie die Gleichung der kostenminimalen Isokostengeraden.
d) Berechnen Sie, wie hoch das Kostenbudget mindestens sein muss, wenn ein Output von 1000 ME produziert werden soll.
e) Erstellen Sie eine Grafik, die Ihre Ergebnisse veranschaulicht. Geben Sie für die Isoquante die Gleichung der Polgeraden und der Asymptote an.
Solve 45=(w+7)2, where w is a real number.
Round your answer to the nearest hundredth.
If there is more than one solution, separate them with commas.
If there is no solution, click on "No solution".
w=□
ㅁ,,.....
No
solution
10.1 Given
f(x)=3−x2 (with domain (−∞,∞)),
g(x)=2−x( with domain (−∞,∞)),
h(x)=x1 (with domain (0,∞)),
find the following compositions
(a) f∘g
(b) g∘f
(c) f∘h
(d) g∘h
(+) hof; What is the domain this function?
(+) hog; What is the domain this function?
10.2 Determine the inverses of the following functions
(a) f(x)=4−5x, (with domain (−∞,∞) )
(b) h(x)=x2−3x+2, (with domain (2,∞))](+)f(x)=3−x2x+1, (also find the domain and range of ℓ and of f−1 )
Consider the following lines.
Line 1: 3x−4y=12
Line 2: a line perpendicular to 3x−4y=42 that contains the point (3,−4)
Write the equation of Line 1 in slope-intercept form.
y=43x−3 Find the slope of Line 1.
3/4 Find the slope of Line 2.
−4/3 Find the equation of Line 2 in point-slope form using the point (3,−4).
y+4=−34(x−3) Find the equation of Line 2 in the form Ax+By=C.
□
The Sugar Sweet Company is going to transport its sugar to market. It will cost $4500 to rent trucks plus $225 for each ton of sugar transported. The total cost, C (in dollars), for transporting n tons is given by the following function.
C(n)=4500+225n Answer the following questions.
(a) If the total cost is $9900, how many tons is the company transporting?
□
ns
(b) What is the total cost of transporting 12 tons?
\\square$
The Sugar Sweet Company is going to transport its sugar to market. It will cost $4500 to rent trucks plus $225 for each ton of sugar transported. The total cost, C (in dollars), for transporting n tons is given by the following function.
C(n)=4500+225n Answer the following questions.
(a) If the total cost is $9900, how many tons is the company transporting?
□ tons
(b) What is the total cost of transporting 12 tons?
\$7200
Which statement is true about the solution of 3x2−12=34x ?
x=−2 is an extraneous solution, and x=6 is a true solution.
x=6 is an extraneous solution, and x=−2 is a true solution.
Both x=−2 and x=6 are extraneous solutions.
Both x=−2 and x=6 are true solutions.
Given that 33051904=3c⋅db⋅d, where b and d; and c and d are the factors of 904&3051, respectively. If b and c are perfect cubes, find the value of d. Q
(Enter a number/value)
Which equation shows a valid step in solving 32x−6+32x+6=0 ?
(32x−6)2=(32x+6)2(32x−6)2=(−32x+6)2(32x−6)3=(32x+6)3(32x−6)3=(−32x+6)3
Mark this and return
sessmentViewer/Activit...
Suppose that a company's profit (in terms of x, the number of units sold) is given by the model P(x)=−4x2+221x−650. Find the profit when 23 units are sold. Answer: □ dollars.
Question Help:
Message instructor
Submit Question
Which equation shows a valid, practical step in solving 42x−8+42x+8=0 ?
(42x−8)3=−(42x+8)3(42x−8)3=(−42x+8)3(42x−8)4=−(42x+8)4(42x−8)4=(−42x+8)4
5) One of the following statements is true -
a) det(AB−1d=det(A)det(B)
(D) a21A31+a22A32+a23A33=det(A)
c) det(2A−1)2=2det(AT)
d) If A=[cosxsinx−sinxcosx], then det(A)=1
e) det(A)−det(AT)=1
Find the domain of the function f(x).
f(x)=5x−94 Select the correct choice below and, if necessary, fill in the answer box to complete you
A. The domain is {x∣□ \}.
(Simplify your answer. Type an inequality or a compound inequality.)
B. The domain is □ 3.
(Simplify your answer. Use a comma to separate answers as needed.)
C. The domain is {x∣x is a real number and x=□ \}.
(Simplify your answer. Use a comma to separate answers as needed.)
D. The domain is the set of all real numbers.
13 Finde den Fehler!
a) Zeige durch Einsetzen eines Werts für x oder mithilfe einer Probe, dass die Rechnungen falsch sein müssen.
b) Erkläre, was falsch gemacht wurde, und korrigiere im Heft.
(1) ==4x−(x+2)4x−x+23x+2
(2) 5x+3=0∣−27x=01:7
(3)
4x+2=2x−22x=−4∣−2x=−6 (4) 52x+512x+512xx=0,3∣⋅5=0,15∣∣−51=−0,05∣:2=−0,25
3. A certain mass hangs from a spring above a table. It is released from a height of 0.9 metres above the table and falls to a height of 0.1 m above the table before reversing direction and bouncing back to 0.9 m . The mass continues to move in a periodic up and down motion. It takes 1.2 seconds for the mass to return to the same position each time.
b) Write an equation which expresses the height h as a function of sinθ.
2. Assume the following transactions occured during 2023: Jan I, Purple purchases 30% of Yellow's common stock for $150,000.
June 30, Yellow reported net income of $50,000.
June 30, Yellow declared \20,000Dividends.July1,Purplepurchasesadditional10 \%ofYellow′scommonstockfor\50,000.
Dec 31, Yellow reported net income of $65,000.
Dec 31, Yellow declared $20,000 dividends.
The Investment in Yellow account balance reported by Purple at December 31, 2023 would be
A. $250,000
B. $275,000
C. $227,000
D. $222,500
16 \text{ Verschiedene Grundstücke unterscheiden sich nur durch die Länge einer Strecke } x. \text{ Judith, Pia, Cem und Lukas haben Terme für den Flächeninhalt der Grundstücke in } \mathrm{m}^{2} \text{ notiert.} \text{Judith: } 11,4 \cdot x-4,3 \cdot(x-9,9) \text{Cem: } 9,9 \cdot 11,4+(x-9,9) \cdot 7,1 \text{Pia: } 9,9 \cdot 4,3+9,9 \cdot 7,1+7,1 \cdot(x-9,9) \text{Lukas: } 9,9 \cdot 4,3+x \cdot 7,1 \text{a) Gib an, welcher Term zu welcher Zeichnung gehört. Begründe deine Entscheidung.} \text{b) Gib einen Term für den Umfang des Grundstücks an und berechne, für welchen Wert von } x \text{ der Umfang 52 m beträgt.}