Algebra

Problem 22301

The following question is taken from a Practice SAT test on the NonCalculator section.
The graph of y=2x2+10x+12y=2 x^{2}+10 x+12 is shown. If the graph crosses the yy-axis at the point (0,k)(0, k), what is the value of kk ? 12 2 10 6

See Solution

Problem 22302

horizontal 1.10 A stunt rider is propelled upward from his motorbike by a spring loaded ejector seat. The rider was travelling horizontally at 60 km h160 \mathrm{~km} \mathrm{~h}^{-1} when the ejector seat was triggered, and as they leave the seat they are travelling with a vertical velocity of 15 m s115 \mathrm{~m} \mathrm{~s}^{-1}. The seat is 1.0 m off the ground. (a) What is the initial velocity of the stunt rider (in kmh1\mathrm{km} \mathrm{h}^{-1} )? (b) How high does the stunt rider reach? (c) How far along the track does the stunt rider land on the ground? (d) What is the velocity of the stunt rider when they hit the ground (in kmh1\mathrm{km} \mathrm{h}^{-1} )?
Answer: (a) 81 km h1,4281 \mathrm{~km} \mathrm{~h}^{-1}, 42^{\circ} above the horizontal (b) 12 m (c) 51 m (d) 82 km h1,4382 \mathrm{~km} \mathrm{~h}^{-1}, 43^{\circ} below the horizontal 1.11 A bullet is fired horizontally from a gun that is 1.5 m from the ground. The bullet travels at 1000 m s11000 \mathrm{~m} \mathrm{~s}^{-1} and strikes a tree 150 m

See Solution

Problem 22303

If possible, find AB,BAA B, B A, and A2A^{2}. (If not possible, enter IMPOSSIBLE in any cell of the matrix.) A=[1245],B=[3401]A=\left[\begin{array}{llll} 1 & 2 & 4 & 5 \end{array}\right], \quad B=\left[\begin{array}{l} 3 \\ 4 \\ 0 \\ 1 \end{array}\right] (a) ABA B (b) BAB A

See Solution

Problem 22304

The equations of three lines are given below. Line 1: y=23x+7y=\frac{2}{3} x+7 Line 2: 3y=2x+53 y=2 x+5 Line 3: 4x6y=84 x-6 y=8
For each pair of lines, determine whether they are parallel, perpendicular, or neither. Line 1 and Line 2: Parallel Perpendicular Neither Line 1 and Line 3: Parallel Perpendicular Neither Line 2 and Line 3: Parallel Perpendicular Neither

See Solution

Problem 22305

The equations of three lines are given below. Line 1: y=2x8y=-2 x-8 Line 2: 3x6y=63 x-6 y=-6 Line 3: y=2x+1y=-2 x+1
For each pair of lines, determine whether they are parallel, perpendicular, or neith
Line 1 and Line 2 : Parallel Perpendicular Neither Line 1 and Line 3: Parallel Perpendicular Neither Line 2 and Line 3 : Parallel Perpendicular Neither

See Solution

Problem 22306

Write an equation of the line below. Explanation Check

See Solution

Problem 22307

Which intercepts will help you find the roots of the equation if 3x+4=2\sqrt{3 x+4}=-2 ?
Select one: a. xx-intercepts of the graph of the function y=3x+42y=\sqrt{3 x+4}-2 b. xx-intercepts of the graph of the function y=3x+4+2y=\sqrt{3 x+4}+2 c. yy-intercepts of the graph of the function y=3x+42y=\sqrt{3 x+4}-2 d. yy-intercepts of the graph of the function y=3x+4+2y=\sqrt{3 x+4}+2

See Solution

Problem 22308

Point SS is the midpoint of line RT. RS is 3x+203 x+20 and RT is 12x1012 x-10. What is the length of RS? Round your answer to the nearest hundredth if necessary. Your Answer:
Answer
Question 3 (2 points)

See Solution

Problem 22309

(c) At the school across the street, 712\frac{7}{12} of the students like neither superhero nor s This represents 189 members of the student body. Set up and solve an calculate the total number of students, TT, that go to this school. in Louisiana have a 10%10 \% sales tax. Talal buys a coat for $45\$ 45

See Solution

Problem 22310

9. simplify 2x+12x+6\frac{2 x+12}{x+6}

See Solution

Problem 22311

3. Two horizontal forces act on a 5.0kg5.0-\mathrm{kg} mass. One force has a magnitude of 8.0 N and is directed due north. The second force toward the east has a magnitude of 6.0 N . What is the acceleration of the mass? A) 1.6 m/s21.6 \mathrm{~m} / \mathrm{s}^{2} due north B) 1.2 m/s21.2 \mathrm{~m} / \mathrm{s}^{2} due east C) 2.0 m/s22.0 \mathrm{~m} / \mathrm{s}^{2} at 53 e N of E
ㅇ) 2.0 m/s22.0 \mathrm{~m} / \mathrm{s}^{2} at 53 mE53 \mathrm{~m} E of N

See Solution

Problem 22312

(n10)15\left(n^{10}\right)^{\frac{1}{5}}

See Solution

Problem 22313

Which of the following illustrates the commutative property of multiplication?
Enter a, b, c, d, or e. a. zy=yzz y=y z b. a+(c+d)=(a+c)+da+(c+d)=(a+c)+d c. y+a=a+yy+a=a+y d. (db)(e+f)=d[b(e+f)](d b)(e+f)=d[b(e+f)] e. (ac+de)(ef)=(de+ac)(ef)(a c+d e)(e f)=(d e+a c)(e f)

See Solution

Problem 22314

8 Abiturprüfung 2011 (Bayern), Analysis, Aufgabengruppe I, Teil 1, Aufgabe 3 Die Anzahl der auf der Erde lebenden Menschen wuchs von 6,1 Milliarden zu Beginn des Jahres 2000 auf 6,9 Milliarden zu Beginn des Jahres 2010. Dieses Wachstum lässt sich näherungsweise durch eine Exponentialfunktion mit einem Term der Form N(x)=N0ek(x2000)N(x)=N_{0} \cdot e^{k \cdot(x-2000)} beschreiben, wobei N(x)\mathrm{N}(\mathrm{x}) die Anzahl der Menschen zu Beginn des Jahres xx ist. Bestimmen Sie N0N_{0} und kk.

See Solution

Problem 22315

Die Anzahl der auf der Erde lebenden Menschen wuchs von 6,1 Milliarden zu Beginn des Jahres 2000 auf 6,9 Milliarden zu Beginn des Jahres 2010. Dieses Wachstum lässt sich näherungsweise durch eine Exponentialfunktion mit einem Term der Form N(x)=N0ek(x2000)N(x)=N_{0} \cdot e^{k \cdot(x-2000)} beschreiben, wobei N(x) die Anzahl der Menschen zu Beginn des Jahres xx ist. Bestimmen Sie N0N_{0} und kk.

See Solution

Problem 22316

peform the Indicated operation 13x2y4÷121x3y\frac{1}{3 x^{2} y^{4}} \div \frac{1}{21 x^{3} y}

See Solution

Problem 22317

2. (4 punti)
Una gru, il cui motore ha una potenza di 3,00 kW3,00 \mathrm{~kW}, solleva di 10,4 m10,4 \mathrm{~m}, a velocità costante, un carico che ha massa di 359 kg . Calcola il tempo impiegato dalla gru per sollevare il carico.

See Solution

Problem 22318

11 Bei dem Reaktorunfall in Tschernobyl am 26. April 1986 wurde u.a. radioaktives Cäsium-137 freigesetzt. Cäsium-137 zerfällt exponentiell mit einer Halbwertszeit von ca. 30 Jahren. Über der damaligen Bundesrepublik Deutschland hatten sich nach Angaben der Gesellschaft für Strahlenund Umweltforschung etwa 230 Gramm radioaktives Cäsium-137 abgelagert, ein Großteil davon in Bayern. a) Beschreiben Sie den Zerfall dieser Menge Cäsium-137 durch eine Funktion f:tbektf: t \mapsto b \cdot e^{k t} ( tt in Jahren und f(t)f(t) in Gramm). b) Geben Sie die Bedeutung des Faktors b im Sachzusammenhang an und berechnen Sie den prozentualen Anteil, um den die Masse des Cäsium-137 jedes Jahr abnimmt. c) Berechnen Sie, nach welcher Zeit weniger als ein Gramm des Cäsium-137 übrig ist. d) Bestimmen Sie die Funktion der Wachstumsgeschwindigkeit für die gegebene Menge Cäsi-um-137. Berechnen Sie die Wachstumsgeschwindigkeit zu Beginn und zum heutigen Zeitpunkt. Beschreiben Sie die Werte im Sachzusammenhang.

See Solution

Problem 22319

Simplify. Assume that the variable represents any real number. x1919\sqrt[19]{x^{19}}
Select the correct choice below and, if necessary, fill in the answer box within your choice. A. x1919=\sqrt[19]{\mathrm{x}^{19}}= \square B. The root does not represent a real number.

See Solution

Problem 22320

86 FUNCTIONS (Chapter 3) 11 Suppose f(x)=1xf(x)=\sqrt{1-x} and g(x)=x2g(x)=x^{2}. Find: a (fg)(x)(f \circ g)(x) b the domain and range of (fg)(x)(f \circ g)(x).

See Solution

Problem 22321

Simplify the radical. Assume that the variable represents a positive real number. x12164\sqrt[4]{\frac{x^{12}}{16}}
Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. x12164=\sqrt[4]{\frac{x^{12}}{16}}= \square (Simplify your answer. Use integers or fractions for any numbers in the expression.) B. The radical does not represent a real number.

See Solution

Problem 22322

If g(x)=x203g(x)=\sqrt[3]{x-20}, find g(12)g(12) g(12)=g(12)=

See Solution

Problem 22323

Use radical notation to rewrite the expression. Simplify if possible 161/216^{1 / 2}
Select the correct choice below and, if necessary, fill in the answer box to complete your choice A. 161/2=16^{1 / 2}= \square (Simplify your answer. Type an exact answer, using radicals as needed.) B. The answer is not a real number.

See Solution

Problem 22324

Зэс цайр хоёрыг зохих хэмжээгээр нийлүүлж хайлууоахад гууль болдог.124г жинтэй гуулийг усанд живүүлэхэд жин нь 15гаар хөнгөрнө.Хэрэв 89г зэсийг усанд живүүлэхэд жин нь 10гаар,7г цайрыг усанд живүүлэхэд жин нь 1гaap хөнгөрдөг бол тэр хэсэг гуульд хэдэн г зэс цайр орох вэ

See Solution

Problem 22325

How many years are required for an investment to double in value if it is appreciating at the rate of 11%11 \% compounded continuously?
At 11\% compounded continuously, the investment doubles in \square years. (Round to one decimal place as needed.)

See Solution

Problem 22326

Factor the given factor from the expression. x25;x25+x45x25+x45=\begin{array}{c} x^{\frac{2}{5}} ; x^{\frac{2}{5}}+x^{\frac{4}{5}} \\ x^{\frac{2}{5}}+x^{\frac{4}{5}}=\square \end{array} \square (Type your answer in factored form. Type your answer using exponential notation. Use integers or fractions for any numbers in the expression.)

See Solution

Problem 22327

Factor the given factor from the expression. x19;x295x19x295x19=\begin{array}{l} x^{\frac{1}{9}} ; x^{\frac{2}{9}}-5 x^{\frac{1}{9}} \\ x^{\frac{2}{9}}-5 x^{\frac{1}{9}}=\square \end{array} \square (Type your answer in factored form. Type your answer using exponential notation. Use integers or fractions for any numbers in the expression.)

See Solution

Problem 22328

How much money must you invest now at 4.1%4.1 \% interest compounded continuously in order to have $10,000\$ 10,000 at the end of 4 years?
You must invest \ \square$ (Round to the nearest cent as needed.)

See Solution

Problem 22329

tisten
This inpus-outpul tabte shows some values that satisty the equation y=4x+21y=4 x+21. 2 2 4 5
What number correctily tils in the biank in the tatie?

See Solution

Problem 22330

Use the graph of the function to answer the question. (s) 2017 StrongMind. Created using GeoGebra.
What is the output of the function when the input is 0 ? Enter your answer as a number, like this: 42

See Solution

Problem 22331

13. A function f(x)f(x) is one-to-one. If the graph of f1(x)f^{-1}(x) lies in the fourth quadrant. In which quadrant does the graph of f(x)f(x) lie? A. First Quadrant B. Second Quadrant b) Given the graph of the function h(x)h(x). graph h1(x)h^{-1}(x) C. Third Quadrant D. Fourth Quadrant

See Solution

Problem 22332

Let A(t)=4000e0.06tA(t)=4000 e^{0.06 t} be the balance in a savings account after tt years. Complete parts (a) through (f) below. (a) How much money was originally deposited?
There was $\$ \square originally deposited. (Type an integer or a decimal.)

See Solution

Problem 22333

Let A(t)=4000e0.06tA(t)=4000 e^{0.06 t} be the balance in a savings account after tt years. Complete parts (a) through (f) below. (a) How much money was originally deposited?
There was \$ 4000 originally deposited. (Type an integer or a decimal.) (b) What is the interest rate?
The interest rate is %\square \%. (Type an integer or a decimal.)

See Solution

Problem 22334

Jerome wants to rent a rowboat to go fishing at the lake. The cost of the rental can be represented by the equation y=18xy=18 x, where xx is the number of hours the boat is rented for, and yy is the total cost.
What is the cost per hour for renting the boat? There is no cost per hour, because the value for bb in the slope-intercept form of the equation y=mx+by=m \boldsymbol{x}+\boldsymbol{b} equals 0 . It costs $18\$ 18 to rent the boat all day. Renting the boat costs $0.18\$ 0.18 per hour. The cost per hour can't be determined without determining the number of hours it is used. Renting the boat costs $18\$ 18 per hour.

See Solution

Problem 22335

Examine the input-output table, which contains some of the ordered pairs of a linear function. \begin{tabular}{|c|c|} \hline Input (x)(x) & Output (y)(y) \\ \hline-4 & 4 \\ \hline-2 & 1 \\ \hline 0 & -2 \\ \hline 4 & -5 \\ \hline \end{tabular}
What is the initial value of the function? 4-4 2-2 0 4

See Solution

Problem 22336

2. Find all values of xx such that x3x2x2>0x^{3}-x^{2}-x-2>0

See Solution

Problem 22337

1. Find the minimum value of 2x2+12x+42 x^{2}+12 x+4 and the value/values of xx where the minimum is attained.

See Solution

Problem 22338

6x2=x6 x^{2}=-x
Select the correct choice below and, if necessary, fill in the ans A. The solution set is \square \}. (Simplify your answer. Use a comma to separate answ B. The scifution set is \varnothing.

See Solution

Problem 22339

Consider the weighted Euclidean inner product defined by <u,v>=7u1v1+6u2v2+4u3v3<u, v>=7 u_{1} v_{1}+6 u_{2} v_{2}+4 u_{3} v_{3}. The generating matrix for this inner product is given by A=A= [700060002]\left[\begin{array}{ccc} \sqrt{7} & 0 & 0 \\ 0 & \sqrt{6} & 0 \\ 0 & 0 & 2 \end{array}\right] True False

See Solution

Problem 22340

Consider the weighted Euclidean inner product defined by u,v=3u1v1+7u2v2+4u3v3\langle\mathbf{u}, \mathbf{v}\rangle=3 u_{1} v_{1}+7 u_{2} v_{2}+4 u_{3} v_{3}. The generating matrix for this inner product is given by A=A= [300070002].\left[\begin{array}{ccc} \sqrt{3} & 0 & 0 \\ 0 & \sqrt{7} & 0 \\ 0 & 0 & 2 \end{array}\right] . True False

See Solution

Problem 22341

Consider the weighted Euclidean inner product defined by <u,v>=3u1v1+7u2v2+4u3v3<u, v>=3 u_{1} v_{1}+7 u_{2} v_{2}+4 u_{3} v_{3}. The generating matrix for this inner product is given by A=A= [300070002]\left[\begin{array}{ccc} \sqrt{3} & 0 & 0 \\ 0 & \sqrt{7} & 0 \\ 0 & 0 & 2 \end{array}\right] True False

See Solution

Problem 22342

Consider the inner product on M22M_{22} defined by <U,V>=u1v1+u2v2+u3v3+u4v4<U, V>=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}+u_{4} v_{4} where U=[u1u2u3u4]U=\left[\begin{array}{ll}u_{1} & u_{2} \\ u_{3} & u_{4}\end{array}\right] and V=[v1v2v3v4]V=\left[\begin{array}{ll}v_{1} & v_{2} \\ v_{3} & v_{4}\end{array}\right]. Using this inner product, the matrices [14755]\left[\begin{array}{ll}-1 & 47 \\ -5 & 5\end{array}\right] and [2154]\left[\begin{array}{cc}2 & 1 \\ 5 & -4\end{array}\right] are orthogonal.
True False

See Solution

Problem 22343

Find <3uˉ,4vˉ+5wˉ><3 \bar{u}, 4 \bar{v}+5 \bar{w}>, given that uˉ,vˉ>=6,<vˉ,wˉ>=5\langle\bar{u}, \bar{v}>=6,<\bar{v}, \bar{w}>=-5, and <uˉ,wˉ>=1<\bar{u}, \bar{w}>=-1 Number

See Solution

Problem 22344

Question 50 The temperature of a nuclear reactor rises at a steady rate of 100 degrees per minute, while the temperature of a thermal reactor doubles every minute. Given that the starting temperatures of the nuclear reactor and the thermal reactor are 400 degrees and 15 degrees, respectively, after how many whole minutes will the temperature of the thermal reactor exceed that of the nuclear reactor?
Marks:1.0 Negative Marks: 0.25

See Solution

Problem 22345

b) (27)13(-27)^{\frac{-1}{3}}

See Solution

Problem 22346

1. Risolvi l'equazione parametrica: ax+b=cx+da x+b=c x+d, dove a,b,ca, b, c e dd sono costanti.
2. Trova xx se 2x+a=bx52 x+a=b x-5, con aa e bb costanti.

See Solution

Problem 22347

3. Risolvi l'equazione parametrica: mx+3=nx2m x+3=n x-2, dove mm e nn sono parametri.
4. Trova xx se 12x+p=qx+q2\frac{1}{2} x+p=q x+\frac{q}{2}, con pp e qq come parametri.
5. Risolvi l'equazione parametrica: rx4=sx+6r x-4=s x+6, dove rr e ss sono costanti.
6. Trova xx se 2xp=qx+p2 x-p=q x+p, con pp e qq parametri.

See Solution

Problem 22348

Consider the following lines. Line 1: 3x4y=123 x-4 y=12 Line 2: a line perpendicular to 3x4y=123 x-4 y=12 that contains the point (3,4)(3,-4) Write the equation of Line 1 in slope-intercept form. \square Find the slope of Line 1. \square Find the slope of Line 2. \square Find the equation of Line 2 in point-slope form using the point (3,4)(3,-4). \square Find the equation of Line 2 in the form Ax+By=CA x+B y=C. \square Need Help? Read It

See Solution

Problem 22349

Expand the following (a) (2x3)(4x+1)(2 x-3)(4 x+1)

See Solution

Problem 22350

Consider the following lines. Line 1: 3x4y=123 x-4 y=12 Line 2: a line perpendicular to 3x4y=123 x-4 y=12 that contains the point (3,4)(3,-4) Write the equation of Line 1 in slope-intercept form. \square Find the slope of Line 1. \square

See Solution

Problem 22351

1. Risolvi l'equazione: xax+1=0x-\sqrt{a} x+1=0, dove aa è un parametro reale positivo.
2. Trova le soluzioni di 2x2+ax3=02 x^{2}+\frac{a}{x}-3=0, dove aa è un parametro reale positivo.

See Solution

Problem 22352

2 Ein Betrieb stellt ein Produkt mit den Inputfaktoren xx (in ME) und yy ( Output soll 1000 ME betragen. Die Faktormengenkombinationen, die zu diesem Output führen, lassen sich mit der Isoquantengleichung y(x)=40x2+3y(x)=\frac{40}{x-2}+3 beschreiben. Bei einem Kostenbudget in Höhe von 730 GE lautet die Gleichung der Isokostengeraden y(x)=10x+73y(x)=-10 x+73, bei einem Kostenbudget von 550 GE lautet sie y(x)=10x+55y(x)=-10 x+55. a) Untersuchen Sie, ob sich mit diesen Kostenbudgets der angestrebte Output erzielen lässt. Geben Sie ggf. die Kombinationsmengen der Inputfaktoren an. b) Berechnen Sie die Minimalkostenkombination. c) Bestimmen Sie die Gleichung der kostenminimalen Isokostengeraden. d) Berechnen Sie, wie hoch das Kostenbudget mindestens sein muss, wenn ein Output von 1000 ME produziert werden soll. e) Erstellen Sie eine Grafik, die Ihre Ergebnisse veranschaulicht. Geben Sie für die Isoquante die Gleichung der Polgeraden und der Asymptote an.

See Solution

Problem 22353

Unit 4 Retest Question 1 of 30 (1 point) | Question Attempt: 1 of 1 1 2 3 4 5. 6 7
Divide. (20x3+13x2+15x4+12+5x)÷(5x21)\left(20 x^{3}+13 x^{2}+15 x^{4}+12+5 x\right) \div\left(-5 x^{2}-1\right)
Write your answer in the following form: Quotient + Remainder 5x21+\frac{\text { Remainder }}{-5 x^{2}-1}. 20x3+13x2+15x4+12+5x5x21=+5x21\frac{20 x^{3}+13 x^{2}+15 x^{4}+12+5 x}{-5 x^{2}-1}=\square+\frac{\square}{-5 x^{2}-1}

See Solution

Problem 22354

Solve 45=(w+7)245=(w+7)^{2}, where ww is a real number. Round your answer to the nearest hundredth. If there is more than one solution, separate them with commas. If there is no solution, click on "No solution". w=w= \square ㅁ,,..... No solution

See Solution

Problem 22355

Factor completely. 3u2+19u+14-3 u^{2}+19 u+14

See Solution

Problem 22356

Factor. 2 81x² - 36xw+4w² Π X

See Solution

Problem 22357

Solve for rr : log3(r+3)=1r=\begin{array}{l} \log _{3}(r+3)=-1 \\ r=\square \end{array}

See Solution

Problem 22358

10.1 Given f(x)=3x2f(x)=3-x^{2} (with domain (,))\left.(-\infty, \infty)\right), g(x)=2x(g(x)=2-x( with domain (,))(-\infty, \infty)), h(x)=1xh(x)=\frac{1}{x} (with domain (0,))\left.(0, \infty)\right), find the following compositions (a) fgf \circ g (b) gfg \circ f (c) fhf \circ h (d) ghg \circ h (+) hof; What is the domain this function? (+)(+) hog; What is the domain this function? 10.2 Determine the inverses of the following functions (a) f(x)=45xf(x)=4-5 x, (with domain (,)(-\infty, \infty) ) (b) h(x)=x23x+2h(x)=x^{2}-3 x+2, (with domain (2,))]\left.\left.(2, \infty)\right)\right] (+)f(x)=2x+13x(+) f(x)=\frac{2 x+1}{3-x}, (also find the domain and range of \ell and of f1f^{-1} )

See Solution

Problem 22359

Consider the following lines. Line 1: 3x4y=123 x-4 y=12 Line 2: a line perpendicular to 3x4y=423 x-4 y=42 that contains the point (3,4)(3,-4) Write the equation of Line 1 in slope-intercept form. y=34x3y=\frac{3}{4} x-3
Find the slope of Line 1. 3/43 / 4
Find the slope of Line 2. 4/3-4 / 3
Find the equation of Line 2 in point-slope form using the point (3,4)(3,-4). y+4=43(x3)y+4=-\frac{4}{3}(x-3)
Find the equation of Line 2 in the form Ax+By=CA x+B y=C. \square

See Solution

Problem 22360

Let f(x)=3x+4f(x)=-3 x+4. Then f1(x)=f^{-1}(x)=

See Solution

Problem 22361

Factor. x2+13xy+36y2x^{2}+13 x y+36 y^{2}

See Solution

Problem 22362

Factor completely: 3v4x348x33 v^{4} x^{3}-48 x^{3}

See Solution

Problem 22363

Solve for ss : 169s5325s1=(125s+5)s=\begin{array}{l} 16^{9 s-5} \cdot 32^{-5 s-1}=\left(\frac{1}{2^{5 s+5}}\right) \\ s=\square \end{array}

See Solution

Problem 22364

6. What is the coefficient of x13x^{13} in the expression (x1x4)89\left(\sqrt{x}-\frac{1}{x^{4}}\right)^{89}.

See Solution

Problem 22365

4(4d+5)-4(-4 d+5)
1 2 \square 16d+2016 d+-20 16s2016 s-20 16+2016+20 16d+20-16 d+20

See Solution

Problem 22366

Fill in the blank. The expression x2+22+x2\frac{x^{2}+2}{2+x^{2}} simplifies to \qquad
The expression x2+22+x2\frac{x^{2}+2}{2+x^{2}} simplifies to \square

See Solution

Problem 22367

What is the solution of (4x16)12=3B?(4 x-16)^{\frac{1}{2}}=3 B^{?} x=5x=5 x=13x=13 x=20x=20 x=328x=328

See Solution

Problem 22368

What is the solution of 4x=100\sqrt{-4 x}=100 ? x=2500x=-2500 x=50x=-50 x=2.5x=-2.5 no solution

See Solution

Problem 22369

The Sugar Sweet Company is going to transport its sugar to market. It will cost $4500\$ 4500 to rent trucks plus $225\$ 225 for each ton of sugar transported. The total cost, C (in dollars), for transporting n tons is given by the following function. C(n)=4500+225nC(n)=4500+225 n
Answer the following questions. (a) If the total cost is $9900\$ 9900, how many tons is the company transporting? \square ns (b) What is the total cost of transporting 12 tons? \ \square$

See Solution

Problem 22370

The Sugar Sweet Company is going to transport its sugar to market. It will cost $4500\$ 4500 to rent trucks plus $225\$ 225 for each ton of sugar transported. The total cost, CC (in dollars), for transporting nn tons is given by the following function. C(n)=4500+225nC(n)=4500+225 n
Answer the following questions. (a) If the total cost is $9900\$ 9900, how many tons is the company transporting? \square tons (b) What is the total cost of transporting 12 tons? \$7200

See Solution

Problem 22371

Which expression is equivalent to (212234)2\left(2^{\frac{1}{2}}-2^{\frac{3}{4}}\right)^{2} ? 234\sqrt[4]{2^{3}} 25\sqrt{2^{5}} 434\sqrt[4]{4^{3}} 45\sqrt{4^{5}}

See Solution

Problem 22372

Which statement is true about the solution of x2123=4x3\sqrt[3]{x^{2}-12}=\sqrt[3]{4 x} ? x=2x=-2 is an extraneous solution, and x=6x=6 is a true solution. x=6x=6 is an extraneous solution, and x=2x=-2 is a true solution. Both x=2x=-2 and x=6x=6 are extraneous solutions. Both x=2x=-2 and x=6x=6 are true solutions.

See Solution

Problem 22373

Solve using the addition principle. 215+x=72 \frac{1}{5}+x=7

See Solution

Problem 22374

Given that 90430513=bdcd3\sqrt[3]{\frac{904}{3051}}=\sqrt[3]{\frac{b \cdot d}{c \cdot d}}, where bb and dd; and cc and dd are the factors of 904&3051904 \& 3051, respectively. If bb and cc are perfect cubes, find the value of dd.
Q (Enter a number/value)

See Solution

Problem 22375

Which equation shows a valid step in solving 2x63+2x+63=0\sqrt[3]{2 x-6}+\sqrt[3]{2 x+6}=0 ? (2x63)2=(2x+63)2(\sqrt[3]{2 x-6})^{2}=(\sqrt[3]{2 x+6})^{2} (2x63)2=(2x+63)2(\sqrt[3]{2 x-6})^{2}=(-\sqrt[3]{2 x+6})^{2} (2x63)3=(2x+63)3(\sqrt[3]{2 x-6})^{3}=(\sqrt[3]{2 x+6})^{3} (2x63)3=(2x+63)3(\sqrt[3]{2 x-6})^{3}=(-\sqrt[3]{2 x+6})^{3} Mark this and return sessmentViewer/Activit...

See Solution

Problem 22376

Simplify this expression. (2+3)(57)(\sqrt{2}+\sqrt{3})(\sqrt{5}-\sqrt{7}) 5+2\sqrt{5}+\sqrt{-2} 10+151421\sqrt{10}+\sqrt{15}-\sqrt{14}-\sqrt{21} 25272 \sqrt{5}-2 \sqrt{7} 25+3527372 \sqrt{5}+3 \sqrt{5}-2 \sqrt{7}-3 \sqrt{7}

See Solution

Problem 22377

Given f(x)=3x+9f(x)=3 x+9 a) Evaluate f(5)f(5) f(5)=f(5)= \square b) Evaluate f(4)f(-4) f(4)=f(-4)= \square Question Help: \square Message instructor

See Solution

Problem 22378

What is the solution of x2+49=x+5\sqrt{x^{2}+49}=x+5 ? x=125x=\frac{12}{5} x=125x=-\frac{12}{5} x=6x=-6 or x=3x=-3 no solution

See Solution

Problem 22379

Suppose that a company's profit (in terms of xx, the number of units sold) is given by the model P(x)=4x2+221x650P(x)=-4 x^{2}+221 x-650. Find the profit when 23 units are sold.
Answer: \square dollars. Question Help: Message instructor Submit Question

See Solution

Problem 22380

Simplify this radical. x13\sqrt{x^{13}} 13x13 \sqrt{x} 6xx6 x \sqrt{x} xx12x \sqrt{x^{12}} x6xx^{6} \sqrt{x}

See Solution

Problem 22381

Which is the rationalized form of the expression xx+7\frac{\sqrt{x}}{\sqrt{x}+\sqrt{7}} ? a. x7xx7\frac{x-\sqrt{7 x}}{x-7} c. x+7xx7\frac{x+\sqrt{7 x}}{x-7} b. 7x7\frac{\sqrt{7 x}}{7} d. xx+7\frac{x}{x+7}

See Solution

Problem 22382

Which equation shows a valid, practical step in solving 2x84+2x+84=0\sqrt[4]{2 x-8}+\sqrt[4]{2 x+8}=0 ? (2x84)3=(2x+84)3(\sqrt[4]{2 x-8})^{3}=-(\sqrt[4]{2 x+8})^{3} (2x84)3=(2x+84)3(\sqrt[4]{2 x-8})^{3}=(-\sqrt[4]{2 x+8})^{3} (2x84)4=(2x+84)4(\sqrt[4]{2 x-8})^{4}=-(\sqrt[4]{2 x+8})^{4} (2x84)4=(2x+84)4(\sqrt[4]{2 x-8})^{4}=(-\sqrt[4]{2 x+8})^{4}

See Solution

Problem 22383

Which equation can be rewritten as x+4=x2x+4=x^{2} ? Assume x>0x>0
x+2=x\sqrt{x}+2=x
x+2=x\sqrt{x+2}=x x+4=x\sqrt{x+4}=x x2+16=x\sqrt{x^{2}+16}=x

See Solution

Problem 22384

20. x=13y+2x=\frac{1}{3} y+2, 2xy=1-2 x-y=1

See Solution

Problem 22385

5) One of the following statements is true - a) det(AB1d=det(A)det(B)\operatorname{det}\left(A B^{-1} d=\operatorname{det}(A) \operatorname{det}(B)\right. (D) a21A31+a22A32+a23A33=det(A)a_{21} A_{31}+a_{22} A_{32}+a_{23} A_{33}=\operatorname{det}(A) c) det(2A1)2=2det(AT)\operatorname{det}\left(2 A^{-1}\right)^{2}=2 \operatorname{det}\left(A^{T}\right) d) If A=[cosxsinxsinxcosx]A=\left[\begin{array}{cc}\cos x & -\sin x \\ \sin x & \cos x\end{array}\right], then det(A)=1\operatorname{det}(\mathrm{A})=1 e) det(A)det(AT)=1\operatorname{det}(\mathrm{A})-\operatorname{det}\left(A^{T}\right)=1

See Solution

Problem 22386

What is x5y6\sqrt{x^{5} y^{6}} expressed in simplified form? x2yxx^{2} y \sqrt{x} x2y2xyx^{2} y^{2} \sqrt{x y} xyxyx y \sqrt{x y} x2y3xx^{2} y^{3} \sqrt{x}

See Solution

Problem 22387

10. What is the imaginary part of the complex number 75i7-5 i ? a. 7 b. -5 c. 5 d. 0 a b C d not given

See Solution

Problem 22388

20. Which complex number lies on the imaginary axis? a. 4+0i4+0 i b. 0+3i0+3 i c. 2+2i-2+2 i d. 1i1-i a b C d not given

See Solution

Problem 22389

Graph y=53x9y=\frac{5}{3} x-9

See Solution

Problem 22390

Find the xx - and yy-intercepts of the following lines.
1. 2x+3y=242 x+3 y=24
2. 3x5y=303 x-5 y=30
3. 7x4y=847 x-4 y=84
4. x+y=8x+y=8 5,x=55, x=5
6. 3y=663 y=66

See Solution

Problem 22391

Find the domain of the function f(x)f(x). f(x)=45x9f(x)=\frac{4}{5 x-9}
Select the correct choice below and, if necessary, fill in the answer box to complete you A. The domain is {x\{x \mid \square \}. (Simplify your answer. Type an inequality or a compound inequality.) B. The domain is \square 3. (Simplify your answer. Use a comma to separate answers as needed.) C. The domain is {xx\{x \mid x is a real number and xx \neq \square \}. (Simplify your answer. Use a comma to separate answers as needed.) D. The domain is the set of all real numbers.

See Solution

Problem 22392

27) Find the function of g(x)g(x) by using function f(x)f(x). A) g(x)=f(x3)+2g(x)=-f(x-3)+2 B) g(x)=f(x+3)+6g(x)=-f(x+3)+6 C) g(x)=f(3x)+2g(x)=-f(3-x)+2 D) g(x)=f(x3)+6g(x)=-f(x-3)+6

See Solution

Problem 22393

13 Finde den Fehler! a) Zeige durch Einsetzen eines Werts für x oder mithilfe einer Probe, dass die Rechnungen falsch sein müssen. b) Erkläre, was falsch gemacht wurde, und korrigiere im Heft.  (1) 4x(x+2)=4xx+2=3x+2\text { (1) } \begin{aligned} & 4 x-(x+2) \\ = & 4 x-x+2 \\ = & 3 x+2 \end{aligned} (2) 5x+3=025 x+3=0 \quad \mid-2 7x=01:77 x=0 \quad 1: 7 (3) 4x+2=2x22x=42x=6\begin{array}{c} 4 x+2=2 x-2 \\ 2 x=-4 \quad \mid-2 \\ x=-6 \end{array}  (4) 25x+15=0,352x+15=0,15152x=0,05:2x=0,25\text { (4) } \begin{aligned} \frac{2}{5} x+\frac{1}{5} & =0,3 \quad \mid \cdot 5 \\ 2 x+\frac{1}{5} & =0,15 \quad \left\lvert\,-\frac{1}{5}\right. \\ 2 x & =-0,05 \quad \mid: 2 \\ x & =-0,25 \end{aligned}

See Solution

Problem 22394

3. A certain mass hangs from a spring above a table. It is released from a height of 0.9 metres above the table and falls to a height of 0.1 m above the table before reversing direction and bouncing back to 0.9 m . The mass continues to move in a periodic up and down motion. It takes 1.2 seconds for the mass to return to the same position each time. b) Write an equation which expresses the height hh as a function of sinθ\sin \theta.

See Solution

Problem 22395

1. Find the real values of xx which satisfies the inequality x(x2)(x1)2(x1)\frac{x}{(x-2)(x-1)} \leq \frac{2}{(x-1)}

See Solution

Problem 22396

Evaluate the indicated function for f(x)=x2+2f(x)=x^{2}+2 and g(x)=x3g(x)=x-3 (f+g)(2)(f+g)(2)=\begin{array}{c} (f+g)(2) \\ (f+g)(2)= \end{array} Submit Answer

See Solution

Problem 22397

2. Assume the following transactions occured during 2023:
Jan I, Purple purchases 30%30 \% of Yellow's common stock for $150,000\$ 150,000. June 30, Yellow reported net income of $50,000\$ 50,000. June 30, Yellow declared \20,000Dividends.July1,Purplepurchasesadditional20,000 Dividends. July 1, Purple purchases additional 10 \%ofYellowscommonstockfor of Yellow's common stock for \50,000 50,000. Dec 31, Yellow reported net income of $65,000\$ 65,000. Dec 31, Yellow declared $20,000\$ 20,000 dividends. The Investment in Yellow account balance reported by Purple at December 31, 2023 would be A. $250,000\$ 250,000 B. $275,000\$ 275,000 C. $227,000\$ 227,000 D. $222,500\$ 222,500

See Solution

Problem 22398

43 (x+2)(x2)x25x50\frac{(x+2)(x-2)-x^{2}}{5 x-5} \geq 0 (x+3)(x2)x2(x3)(x+2)x2<0\frac{(x+3)(x-2)-x^{2}}{(x-3)(x+2)-x^{2}}<0

See Solution

Problem 22399

Evaluate: +5283]0+(526)(1258)\left.+5^{2}-8^{3}\right]^{0}+\left(5^{26}\right)\left(125^{-8}\right)- (Enter a value/number)

See Solution

Problem 22400

16 \text{ Verschiedene Grundstücke unterscheiden sich nur durch die Länge einer Strecke } x. \text{ Judith, Pia, Cem und Lukas haben Terme für den Flächeninhalt der Grundstücke in } \mathrm{m}^{2} \text{ notiert.}
\text{Judith: } 11,4 \cdot x-4,3 \cdot(x-9,9)
\text{Cem: } 9,9 \cdot 11,4+(x-9,9) \cdot 7,1
\text{Pia: } 9,9 \cdot 4,3+9,9 \cdot 7,1+7,1 \cdot(x-9,9)
\text{Lukas: } 9,9 \cdot 4,3+x \cdot 7,1
\text{a) Gib an, welcher Term zu welcher Zeichnung gehört. Begründe deine Entscheidung.}
\text{b) Gib einen Term für den Umfang des Grundstücks an und berechne, für welchen Wert von } x \text{ der Umfang 52 m beträgt.}

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord