Math Statement

Problem 19701

Isolate xx in the equation 24=7x+314y24=7 x+3-14 y. What are the possible expressions for xx?

See Solution

Problem 19702

Simplify the expression 37×119\frac{3}{7} \times \frac{11}{9}.

See Solution

Problem 19703

Rewrite 15×3915 \times 39 using one of these forms: (15×3)+(15×9)(15 \times 3)+(15 \times 9), (39×15)+(9×15)(39 \times 15)+(9 \times 15), (15×30)(15×9)(15 \times 30)-(15 \times 9), or (15×40)(15×1)(15 \times 40)-(15 \times 1).

See Solution

Problem 19704

Calculate the expression step-by-step: 6+546+7\frac{6+5 \cdot 4}{6+7}. What is the result?

See Solution

Problem 19705

Calculate 480072790948007 - 27909. What is the result? Options: 21908, 20098, 22809, 19098.

See Solution

Problem 19706

Simplify: 7X3+6X3+2Y3Y22X2+x+2Y33Y27 X^{3}+6 X^{3}+2 Y^{3}-Y^{2}-2 X^{2}+x+2 Y^{3}-3 Y^{2}.

See Solution

Problem 19707

Describe how the graph of f(x)=x2f(x) = x^2 transforms to become g(x)=(x2)2+3g(x) = (x-2)^2 + 3.

See Solution

Problem 19708

Calculate the division: 56772÷8=709656772 \div 8 = 7096 remainder 44.

See Solution

Problem 19709

Find the product of 23\sqrt{23} and 2232 \sqrt{23}, and state if the result is rational or irrational.

See Solution

Problem 19710

Calculate 7236÷47236 \div 4 and choose the correct answer from: 1836, 7232, 28944, 1809.

See Solution

Problem 19711

Find all factors of the whole number 16.

See Solution

Problem 19712

Find the vertical asymptotes of the function y=x2+2x+1x+x2y=\frac{x^{2}+2 x+1}{x+x^{2}}.

See Solution

Problem 19713

Find the value of bb for the continuous function f(x)={x2+bx,x55sin(π2x),x>5f(x)=\left\{\begin{array}{l}x^{2}+b x, x \leq 5 \\ 5 \sin \left(\frac{\pi}{2} x\right), x>5\end{array}\right..

See Solution

Problem 19714

Evaluate the limit: limx1+41x\lim _{x \rightarrow 1^{+}} \frac{-4}{1-x}

See Solution

Problem 19715

Find limx2g(x)\lim _{x \rightarrow 2} g(x) given 2x+1g(x)x22x+52x + 1 \leq g(x) \leq x^2 - 2x + 5.

See Solution

Problem 19716

Find the limit: limx1x2+2x3x21\lim _{x \rightarrow 1} \frac{x^{2}+2x-3}{x^{2}-1}.

See Solution

Problem 19717

Calculate the expression: (6+1)×(73)(6+1) \times(7-3).

See Solution

Problem 19718

Is yy a function of xx in the relation x=y3x=y^{3}?

See Solution

Problem 19719

Calculate the expression: 12+8×7+612 + 8 \times 7 + 6.

See Solution

Problem 19720

Calculate f(2)f(-2) for the function f(x)=3x22x+1f(x)=3x^{2}-2x+1.

See Solution

Problem 19721

Is y=1xy=\sqrt{1-x} a function of xx? Determine if it meets the function criteria.

See Solution

Problem 19722

Simplify the expression: 34(8x22x)43(6x312x21x2)\frac{3}{4}(8 x^{2}-2 x)-\frac{4}{3}(6 x^{3}-12 x-21 x^{2}).

See Solution

Problem 19723

Solve the equation x22x+10=0x^{2}-2x+10=0 using the quadratic formula. Provide the solution set in simplified form.

See Solution

Problem 19724

Calculate 44 4^4 .

See Solution

Problem 19725

Simplify the expression: (243y10)35(243 y^{10})^{\frac{3}{5}}.

See Solution

Problem 19726

If 3+2i3+2 i is a root of z2+pz+q=0z^{2}+p z+q=0, find the values of pp and qq where p,qRp, q \in \mathbb{R}.

See Solution

Problem 19727

Calculate f(1)f(-1) for the function defined by f(x)=8x27x+3f(x)=8x^{2}-7x+3.

See Solution

Problem 19728

Determine the domain of the function x+5x+3\frac{x+5}{x+3} and express it in interval notation.

See Solution

Problem 19729

Find the intercepts of the line given by y=9x14y=-9x-14. No rounding needed. xx-intercept: yy-intercept:

See Solution

Problem 19730

Find the value of the function f(0)=8(0)27(0)+3f(0)=8(0)^{2}-7(0)+3.

See Solution

Problem 19731

Identify which points satisfy the inequalities: y>3x+3y > -3x + 3 and y>x+2y > x + 2. Check (2,5)(2,-5), (2,5)(-2,5), (2,5)(2,5), (2,5)(-2,-5).

See Solution

Problem 19732

Factor the polynomial 10x3y32x2y4+6xy410x^{3}y^{3}-2x^{2}y^{4}+6xy^{4}.

See Solution

Problem 19733

Factor the cubic polynomial 4x38x2x+24x^{3}-8x^{2}-x+2.

See Solution

Problem 19734

Factor the polynomial 4x38x2x24x^{3}-8x^{2}-x-2.

See Solution

Problem 19735

Find the number of solutions for the equation x=x9x = x - 9. A. 2 B. 1 C. 0 D. Infinitely many

See Solution

Problem 19736

Solve for xx in the equation: 15x5+x=4715 x - 5 + x = -47. Which option is correct? A, B, C, or D?

See Solution

Problem 19737

Solve the inequality x9+3<4\frac{x}{9}+3<4.

See Solution

Problem 19738

Solve 8x+4=4x+168x + 4 = 4x + 16. What is the value of xx? A. 55 B. 11 C. 44 D. 33

See Solution

Problem 19739

Find the unit vector in the direction of the sum of the vectors a=2i^j^+2k^\vec{a}=2 \hat{i}-\hat{j}+2 \hat{k} and b=i^+j^+3k^\vec{b}=-\hat{i}+\hat{j}+3 \hat{k}.

See Solution

Problem 19740

Determine if the function f(x)=3x2+24x4f(x)=-3 x^{2}+24 x-4 has a max or min value, and find that value.

See Solution

Problem 19741

Solve: (x+2)2+4=3(x+2)^{2}+4=3

See Solution

Problem 19742

Solve the system:
y = x + 6 9x² + y² = 36
List all solutions as ordered pairs or state if there are none.

See Solution

Problem 19743

Divide 37 by 4 using long division.

See Solution

Problem 19744

Convert 6.7×1016.7 \times 10^{1} from scientific notation to standard form.

See Solution

Problem 19745

Simplify the scientific notation 6.7 x 10^{1}.

See Solution

Problem 19746

Calculate 6.7×1016.7 \times 10^{1}.

See Solution

Problem 19747

Determine if the function f(x)=3x2+18x3f(x)=-3x^{2}+18x-3 has a max or min value and find that value.

See Solution

Problem 19748

Question 6 (1 point) Which compound angle expression is equivalent to sinxcosy+cosxsiny\sin x \cos y+\cos x \sin y ? a) cos(xy)\cos (x-y) b) sin(x+y)\sin (x+y) C) cos(x+y)\cos (x+y) d) sin(xy)\sin (x-y)

See Solution

Problem 19749

Calculate the sample standard deviation of land areas: s=1N1i=1N(xixˉ)2s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2} for xi=0.05502755,0.03826905,0.09070248,0.05968779,0.06818182x_i = 0.05502755, 0.03826905, 0.09070248, 0.05968779, 0.06818182.

See Solution

Problem 19750

Calculate the value of 1.6×1031.6 \times 10^{3}.

See Solution

Problem 19751

Calculate the value of 2.91×1052.91 \times 10^{5}.

See Solution

Problem 19752

Calculate the value of 3.35×1013.35 \times 10^{-1}.

See Solution

Problem 19753

Calculate the value of 1.49×1071.49 \times 10^{-7}.

See Solution

Problem 19754

Find the units of the student's answer for the expression: (0.25 L)(1 mL103 L)(1.50gmL)(140.18gmol)\frac{(0.25 \mathrm{~L})\left(\frac{1 \mathrm{~mL}}{10^{-3} \mathrm{~L}}\right)\left(1.50 \frac{\mathrm{g}}{\mathrm{mL}}\right)}{\left(140.18 \frac{\mathrm{g}}{\mathrm{mol}}\right)}.

See Solution

Problem 19755

Calculate the units for: (163.mgdL)(103 g1mg)(1dL101 L)(103 L1 mL) \left(163 . \frac{\mathrm{mg}}{\mathrm{dL}}\right)\left(\frac{10^{-3} \mathrm{~g}}{1 \mathrm{mg}}\right)\left(\frac{1 \mathrm{dL}}{10^{-1} \mathrm{~L}}\right)\left(\frac{10^{-3} \mathrm{~L}}{1 \mathrm{~mL}}\right).

See Solution

Problem 19756

Calculate the expression: (24)4128(-24)-41-28.

See Solution

Problem 19757

Maximize P=4x+2yP=4x+2y with constraints: 2x+2y102x+2y \leq 10, 3x+y93x+y \leq 9, x0x \geq 0, y0y \geq 0.

See Solution

Problem 19758

Calculate 2+(112)2 + \left(-1 \frac{1}{2}\right).

See Solution

Problem 19759

Maximize revenue for R(p)=6p2+18,000pR(p)=-6p^2+18,000p and find the unit price and maximum revenue.

See Solution

Problem 19760

Calculate the sum of 1 and 1. What is 1+11 + 1?

See Solution

Problem 19761

Solve the quadratic equation x210x+34=0x^{2}-10 x+34=0 using the quadratic formula. Provide exact answers with radicals and ii.

See Solution

Problem 19762

Find the price per bushel of corn using the function p(x)=5+0.03x+0.06x2p(x)=5+0.03 x+0.06 x^{2} for x=0x=0 to x=5x=5.

See Solution

Problem 19763

Simplify: 256÷62 \frac{5}{6} \div 6. Choose the correct answer: A. 2452 \frac{4}{5} B. 1736\frac{17}{36} C. 1351 \frac{3}{5} D. 22172 \frac{2}{17}

See Solution

Problem 19764

Find the significant digits in the measurement 52.9 km52.9 \mathrm{~km}.

See Solution

Problem 19765

Determine the end behavior of f(x)=7(x3)(x+9)2f(x)=-7(x-3)(x+9)^{2} and find its real zeros.

See Solution

Problem 19766

Find the real zeros and their multiplicities for f(x)=7(x3)(x+9)2f(x)=-7(x-3)(x+9)^{2}. Does the graph cross/touch the xx-axis? What is the end behavior?

See Solution

Problem 19767

Solve 3ax+4ax=5ax+43ax + 4ax = 5ax + 4 for xx, given that a0a \neq 0.

See Solution

Problem 19768

For the function f(x)=6(x7)(x+7)2f(x)=-6(x-7)(x+7)^{2}, find real zeros, their multiplicities, graph behavior, max, and end behavior.

See Solution

Problem 19769

Find the significant digits in the measurement 0.6mi0.6 \mathrm{mi}.

See Solution

Problem 19770

Given the function f(x)=6(x7)(x+7)2f(x)=-6(x-7)(x+7)^{2}, find real zeros, their multiplicities, graph behavior, and end behavior.

See Solution

Problem 19771

Find the inverse of the function f(x)=4x16x9f(x)=\frac{4x-1}{6x-9}.

See Solution

Problem 19772

For the function f(x)=8(x1)(x+3)2f(x)=-8(x-1)(x+3)^{2}, find real zeros, their multiplicity, and graph behavior at xx-intercepts.

See Solution

Problem 19773

Identify the terms in the expression for the cost of attending a play: 45p+745 p + 7.

See Solution

Problem 19774

Find xx given that mBJK=146+2xm \angle BJK = 146 + 2x, mIJK=172m \angle IJK = 172^\circ, and mIJB=2x+26m \angle IJB = 2x + 26.

See Solution

Problem 19775

Solve for cc in the equation 6c+1=26 c + 1 = -2.

See Solution

Problem 19776

Solve for cc in the equation 6c+1=26 c + 1 = -2.

See Solution

Problem 19777

Simplify: 74÷437\frac{7}{4} \div 4 \frac{3}{7}. Choices: A. 49124\frac{49}{124} B. 1151 \frac{1}{5} C. 226492 \frac{26}{49} D. 1341 \frac{3}{4}.

See Solution

Problem 19778

Simplify: 8÷358 \div \frac{3}{5}. Options: A. 8358 \frac{3}{5} B. 38\frac{3}{8} C. 7257 \frac{2}{5} D. 131313 \frac{1}{3}

See Solution

Problem 19779

Simplify: 119÷54\frac{11}{9} \div \frac{5}{4}. Choose the correct answer: A. 1151 \frac{1}{5} B. 2782 \frac{7}{8} C. 49104 \frac{9}{10} D. 4445\frac{44}{45}

See Solution

Problem 19780

Find mNFEm \angle N F E given mGFN=4x+10m \angle G F N=4x+10, mNFE=14x+3m \angle N F E=14x+3, and mGFE=157m \angle G F E=157^{\circ}.

See Solution

Problem 19781

Simplify: 3÷5.53 \div 5.5 A. 16.516.5 B. 47\frac{4}{7} C. 3.93.9 D. 611\frac{6}{11}

See Solution

Problem 19782

Simplify: 379÷1893 \frac{7}{9} \div 1 \frac{8}{9}. Options: A. 2 B. 1891 \frac{8}{9} C. D. 23102 \frac{3}{10}

See Solution

Problem 19783

For the function f(x)=7(x2+9)(x8)3f(x)=-7\left(x^{2}+9\right)(x-8)^{3}, find real zeros, their multiplicities, graph behavior, and end behavior.

See Solution

Problem 19784

Simplify: 1÷13101 \div \frac{13}{10}. Options: A. 19101 \frac{9}{10} B. 23102 \frac{3}{10} C. 1013\frac{10}{13} D. 1341 \frac{3}{4}

See Solution

Problem 19785

Find 2 values of θ\theta in [0,2π)[0, 2\pi) such that cotθ=3.2041\cot \theta = 3.2041.

See Solution

Problem 19786

For the function f(x)=7(x2+9)(x8)3f(x)=-7\left(x^{2}+9\right)(x-8)^{3}, find the real zeros, their multiplicities, and end behavior.

See Solution

Problem 19787

Find the reference angle for θ=48π18\theta=\frac{48 \pi}{18} and the least nonnegative coterminal angle. θC=\theta_{\mathrm{C}}=

See Solution

Problem 19788

Solve for xx in the equation: 2(x+2)7=3-2(x+2)-7=-3.

See Solution

Problem 19789

For the function f(x)=8(x2+9)(x7)3f(x)=-8\left(x^{2}+9\right)(x-7)^{3}, find real zeros, their multiplicity, and end behavior.

See Solution

Problem 19790

Calculate ((2.1)5(0.9)4)3\left(\frac{(2.1)^{5}}{(0.9)^{4}}\right)^{3}.

See Solution

Problem 19791

Find the inverse of the function f(x)=12x2f(x)=12 x-2.

See Solution

Problem 19792

For the function f(x)=8(x2+9)(x7)3f(x)=-8\left(x^{2}+9\right)(x-7)^{3}, find real zeros, their multiplicities, and end behavior.

See Solution

Problem 19793

Find mHIWm \angle H I W given mWIJ=10xm \angle W I J=10 x, mHIJ=145m \angle H I J=145^{\circ}, and mHIW=2x+13m \angle H I W=2 x+13.

See Solution

Problem 19794

For the polynomial f(x)=3(x2+9)(x3)3f(x)=-3\left(x^{2}+9\right)(x-3)^{3}, find real zeros, their multiplicities, crossing behavior, and end behavior.

See Solution

Problem 19795

Find the inverse of f(x)=x5f(x)=\sqrt{x-5} for x5x \geq 5.

See Solution

Problem 19796

Simplify 4.3(4.32)44.3 \cdot (4.3^2)^4

See Solution

Problem 19797

Find an equivalent expression for ((2.1)5(0.9)4)3\left(\frac{(2.1)^{5}}{(0.9)^{4}}\right)^{3}.

See Solution

Problem 19798

Find an equivalent expression for ((2.1)5(0.9)4)3\left(\frac{(2.1)^{5}}{(0.9)^{4}}\right)^{3}.

See Solution

Problem 19799

Rewrite (x2)3\left(x^{2}\right)^{3} as a single exponent: (x2)3=x\left(x^{2}\right)^{3}=x^{\square}. Fill in the blank.

See Solution

Problem 19800

Find the equivalent expression for ((2.1)5(0.9)4)3\left(\frac{(2.1)^{5}}{(0.9)^{4}}\right)^{3}. Options: 2.332.3^{3}, (2.1)15(0.9)12\frac{(2.1)^{15}}{(0.9)^{12}}, (2.1)8(0.9)7\frac{(2.1)^{8}}{(0.9)^{7}}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord