Get Started for Free
Overview
Archive
Sign In
Math
Arithmetic
Fractions and Decimals
Measurement
Geometry
Word Problems
Algebra
Calculus
Statistics
Probability
Number Theory
Discrete Mathematics
Linear Algebra
Differential Equations
Trigonometry
Finance
Data
Graph
Diagram & Picture
Math Statement
Expression
Equation
Inequality
System
Matrix
Vector
Set
Function
Sequence
Series
Vector Space
Distribution
Solve
Simplify
Model
Prove
Analyze
Numbers & Operations
Data & Statistics
Discrete
Natural Numbers
Fractions
Decimals
Integers
Rationals
Percentages
Ratios & Proportions
Order of Operations
Linearity
Absolute Value
Quadratics
Rational
Exponents & Radicals
Polynomials
Exponentials
Logarithms
Matrices
Complex Numbers
Angles
Triangles
Circles
Congruence & Similarity
Pythagorean Theorem
Mensuration
Transformations
Coordinates
Data Collection & Representation
Measures of Central Tendency
Measures of Spread
Statistical Inference
Right Triangle
Non-Right Triangle
Unit Circle & Radians
Identities & Equations
Applications
Limits & Continuity
Derivatives
Integrals
Combinatorics
Word Problem
Sequences & Series
Archive
/
Math
Math Statement
Problem 19501
Calculate
5
,
621
÷
20
5,621 \div 20
5
,
621
÷
20
.
See Solution
Problem 19502
Simplify
(
−
4
x
2
y
2
)
2
\left(\frac{-4 x^{2}}{y^{2}}\right)^{2}
(
y
2
−
4
x
2
)
2
using exponent properties and show only positive exponents.
See Solution
Problem 19503
Find the initial total sales of a spy novel modeled by
f
(
x
)
=
18
,
245
(
1.021
)
x
f(x)=18,245(1.021)^{x}
f
(
x
)
=
18
,
245
(
1.021
)
x
when
x
=
0
x=0
x
=
0
.
See Solution
Problem 19504
Simplify the expression:
−
2
(
6
x
y
2
)
0
-2(6xy^2)^0
−
2
(
6
x
y
2
)
0
and use only positive exponents in your answer.
See Solution
Problem 19505
Simplify the expression
−
2
(
3
m
−
2
n
2
)
−
1
-2\left(3 m^{-2} n^{2}\right)^{-1}
−
2
(
3
m
−
2
n
2
)
−
1
using exponent rules and show only positive exponents.
See Solution
Problem 19506
Solve
4
lg
2
=
(
1
9
x
)
lg
4
4^{\lg 2}=\left(\frac{1}{9 x}\right)^{\lg 4}
4
l
g
2
=
(
9
x
1
)
l
g
4
without a calculator.
See Solution
Problem 19507
Find the intensity,
I
I
I
, of an earthquake with a magnitude of 6.7 using
R
=
log
(
I
1
)
R=\log \left(\frac{I}{1}\right)
R
=
lo
g
(
1
I
)
. Round to the nearest whole number.
See Solution
Problem 19508
Find the equation of the line parallel to
12
x
−
18
y
=
−
36
12 x-18 y=-36
12
x
−
18
y
=
−
36
that goes through the point
P
(
−
3
,
−
6
)
P(-3,-6)
P
(
−
3
,
−
6
)
.
See Solution
Problem 19509
Find the total sales of a strategy game on January 1, 2030, using
f
(
x
)
=
10
,
333
(
1.046
)
x
f(x)=10,333(1.046)^{x}
f
(
x
)
=
10
,
333
(
1.046
)
x
with
x
=
17
x=17
x
=
17
.
See Solution
Problem 19510
Find the frequency of note A# (1 half step above A3 at 220 Hz) using the formula
F
(
x
)
=
F
0
(
1.059463
)
x
F(x)=F_{0}(1.059463)^{x}
F
(
x
)
=
F
0
(
1.059463
)
x
. Round to the nearest whole number.
See Solution
Problem 19511
Is it true or false that if the product of a point's coordinates is positive, the point is in quadrant I?
See Solution
Problem 19512
Find the intensity
I
I
I
of an earthquake with a magnitude of 4.5 using
R
=
log
(
I
1
)
R=\log \left(\frac{I}{1}\right)
R
=
lo
g
(
1
I
)
. Round to the nearest whole number.
See Solution
Problem 19513
What was the initial population of a Texas town modeled by
f
(
x
)
=
10
,
906
(
1.032
)
x
f(x)=10,906(1.032)^{x}
f
(
x
)
=
10
,
906
(
1.032
)
x
on January 1, 2013?
See Solution
Problem 19514
Determine if the polynomial
3
x
(
x
2
+
5
x
−
24
)
(
2
x
+
1
)
3 x(x^{2}+5 x-24)(2 x+1)
3
x
(
x
2
+
5
x
−
24
)
(
2
x
+
1
)
is in factored, standard, or mixed form.
See Solution
Problem 19515
Calculate the product:
0.2
×
0.8
=
0.2 \times 0.8=
0.2
×
0.8
=
See Solution
Problem 19516
Calculate
7
,
854
÷
21
7,854 \div 21
7
,
854
÷
21
.
See Solution
Problem 19517
Determine if the polynomial
x
+
9
⋅
(
x
2
⋅
5
x
+
4
)
x + 9 \cdot (x^{2} \cdot 5x + 4)
x
+
9
⋅
(
x
2
⋅
5
x
+
4
)
is in factored, standard, or mixed form.
See Solution
Problem 19518
Solve the equations:
2
x
+
1
−
3
y
+
1
=
4
2^{x+1}-3^{y+1}=4
2
x
+
1
−
3
y
+
1
=
4
and
2
2
(
x
+
1
)
−
3
2
(
y
+
1
)
=
64
2^{2(x+1)}-3^{2(y+1)}=64
2
2
(
x
+
1
)
−
3
2
(
y
+
1
)
=
64
to three significant figures.
See Solution
Problem 19519
Calculate
0.085631
×
1.32
0.085631 \times 1.32
0.085631
×
1.32
and round the result to the correct number of significant figures.
See Solution
Problem 19520
Solve:
5
8
÷
3
4
\frac{5}{8} \div \frac{3}{4}
8
5
÷
4
3
See Solution
Problem 19521
Solve:
26.04
÷
−
6.2
26.04 \div -6.2
26.04
÷
−
6.2
See Solution
Problem 19522
Determine the form of the polynomial:
(
x
+
2
)
7
x
(
x
+
1
)
3
x
4
(
x
−
8
)
(x+2) 7 x(x+1) 3 x^{4}(x-8)
(
x
+
2
)
7
x
(
x
+
1
)
3
x
4
(
x
−
8
)
(factored, standard, or mixed).
See Solution
Problem 19523
Find the intercepts of the line given by
y
−
3
=
5
(
x
−
2
)
y-3=5(x-2)
y
−
3
=
5
(
x
−
2
)
.
y
y
y
-intercept:
(
,
)
(\quad, \quad)
(
,
)
,
x
x
x
-intercept:
(
,
)
(, \quad)
(
,
)
.
See Solution
Problem 19524
Find the intercepts of the line given by
y
=
−
9
x
−
14
y=-9x-14
y
=
−
9
x
−
14
.
x
x
x
-intercept:
(
,
)
(\quad, \quad)
(
,
)
,
y
y
y
-intercept:
See Solution
Problem 19525
Find
tan
(
θ
)
\tan (\theta)
tan
(
θ
)
given
sin
(
θ
)
<
0
\sin (\theta)<0
sin
(
θ
)
<
0
and
sec
(
θ
)
=
35
4
\sec (\theta)=\frac{\sqrt{35}}{4}
sec
(
θ
)
=
4
35
. Provide the exact answer.
See Solution
Problem 19526
Solve
cos
(
x
2
)
=
−
3
2
\cos \left(\frac{x}{2}\right)=-\frac{\sqrt{3}}{2}
cos
(
2
x
)
=
−
2
3
for
x
x
x
in
[
0
,
2
π
)
[0,2\pi)
[
0
,
2
π
)
. Provide exact radian solutions.
See Solution
Problem 19527
Check if the following expressions are equivalent by rewriting them: 1)
7
n
(
3
n
+
1
)
7 n(3 n+1)
7
n
(
3
n
+
1
)
2)
x
2
−
25
x^{2}-25
x
2
−
25
3)
(
4
w
+
2
)
2
(4 w+2)^{2}
(
4
w
+
2
)
2
See Solution
Problem 19528
Simplify:
4
∣
6
−
7
∣
−
27
÷
3
=
4|6-7|-27 \div 3 =
4∣6
−
7∣
−
27
÷
3
=
See Solution
Problem 19529
Simplify the expression:
∣
−
4
−
2
∣
(
−
7
)
+
2
2
|-4-2|(-7)+2^{2}
∣
−
4
−
2∣
(
−
7
)
+
2
2
. What is the result?
See Solution
Problem 19530
Find the inverse function
f
−
1
f^{-1}
f
−
1
of
f
(
x
)
=
(
x
4
+
4
)
−
1
f(x)=\left(x^{4}+4\right)^{-1}
f
(
x
)
=
(
x
4
+
4
)
−
1
for
x
∈
(
−
∞
,
0
]
x \in (-\infty, 0]
x
∈
(
−
∞
,
0
]
.
See Solution
Problem 19531
Simplify the expression:
9
−
2
2
+
3
−
(
7
−
9
)
=
9 - 2^{2} + 3 - (7 - 9) =
9
−
2
2
+
3
−
(
7
−
9
)
=
(Provide your answer.)
See Solution
Problem 19532
Solve
cos
(
x
2
)
=
1
2
\cos \left(\frac{x}{2}\right)=\frac{1}{2}
cos
(
2
x
)
=
2
1
for
x
x
x
in
[
0
,
2
π
)
[0,2 \pi)
[
0
,
2
π
)
, and give the answer in exact radians.
See Solution
Problem 19533
Find the set of numbers that are both rational and irrational. Choose the correct set: A.
∅
\varnothing
∅
B.
{
0
}
\{0\}
{
0
}
C.
{
x
,
−
x
}
\{\sqrt{x}, \sqrt{-x}\}
{
x
,
−
x
}
D.
{
0
,
1
,
2
,
3
,
4
,
5
,
…
}
\{0,1,2,3,4,5, \ldots\}
{
0
,
1
,
2
,
3
,
4
,
5
,
…
}
See Solution
Problem 19534
Factor the expression:
14
a
b
−
2
a
+
21
b
−
3
14ab - 2a + 21b - 3
14
ab
−
2
a
+
21
b
−
3
into the form
(
?
a
+
[
]
)
(
?
b
−
[
]
)
(?a + [])(?b - [])
(
?
a
+
[
])
(
?
b
−
[
])
.
See Solution
Problem 19535
Is the function
f
(
x
)
f(x)
f
(
x
)
, defined as
f
(
x
)
=
ln
x
+
4
−
1
3
+
x
f(x)=\ln \frac{\sqrt{x+4}-1}{3+x}
f
(
x
)
=
ln
3
+
x
x
+
4
−
1
for
x
≠
−
3
x \neq -3
x
=
−
3
and
f
(
−
3
)
=
2
f(-3)=2
f
(
−
3
)
=
2
, continuous at
x
=
−
3
x=-3
x
=
−
3
?
See Solution
Problem 19536
Is the function
f
(
x
)
=
x
2
−
4
f(x) = \sqrt{x^{2}-4}
f
(
x
)
=
x
2
−
4
continuous at
x
=
0
x=0
x
=
0
?
See Solution
Problem 19537
Find the axis of symmetry for
f
(
x
)
=
x
2
+
3
x
+
6
f(x)=x^{2}+3x+6
f
(
x
)
=
x
2
+
3
x
+
6
using
x
=
−
b
2
a
x=\frac{-b}{2a}
x
=
2
a
−
b
. What is
x
=
[
?
]
[
]
[
]
x=[?] \frac{[]}{[]}
x
=
[
?]
[
]
[
]
?
See Solution
Problem 19538
Which graph has the narrowest parabola:
y
=
−
2
x
2
+
x
+
3
y=-2x^{2}+x+3
y
=
−
2
x
2
+
x
+
3
or
f
(
x
)
=
−
4
x
2
−
30
x
f(x)=-4x^{2}-30x
f
(
x
)
=
−
4
x
2
−
30
x
?
See Solution
Problem 19539
Check if the function
f
(
x
)
=
{
e
x
/
(
x
+
1
)
if
x
≠
−
1
e
−
1
if
x
=
−
1
f(x)=\begin{cases} e^{x /(x+1)} & \text{if } x \neq-1 \\ e^{-1} & \text{if } x=-1 \end{cases}
f
(
x
)
=
{
e
x
/
(
x
+
1
)
e
−
1
if
x
=
−
1
if
x
=
−
1
is continuous at
x
=
−
1
x=-1
x
=
−
1
.
See Solution
Problem 19540
Is the piecewise function
f
(
x
)
=
{
x
2
if
x
⩾
−
3
−
3
if
x
<
−
3
f(x)=\begin{cases} \sqrt{x^{2}} & \text{if } x \geqslant-3 \\ -3 & \text{if } x<-3 \end{cases}
f
(
x
)
=
{
x
2
−
3
if
x
⩾
−
3
if
x
<
−
3
continuous at
x
=
−
3
x=-3
x
=
−
3
?
See Solution
Problem 19541
Is the function
f
(
x
)
=
1
x
+
1
f(x)=\frac{1}{x+1}
f
(
x
)
=
x
+
1
1
continuous at
x
=
c
x=c
x
=
c
for
c
=
1
c=1
c
=
1
?
See Solution
Problem 19542
Is the function
f
(
x
)
=
{
sin
x
x
if
x
≠
0
1
if
x
=
0
f(x)=\left\{\begin{array}{ll}\frac{\sin x}{x} & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{array}\right.
f
(
x
)
=
{
x
s
i
n
x
1
if
x
=
0
if
x
=
0
continuous at
x
=
0
x=0
x
=
0
?
See Solution
Problem 19543
Convert
0.0001
d
g
0.0001 \mathrm{dg}
0.0001
dg
to
p
g
\mathrm{pg}
pg
.
See Solution
Problem 19544
Convert
9.87
×
1
0
−
30
m
l
9.87 \times 10^{-30} \mathrm{ml}
9.87
×
1
0
−
30
ml
to
T
l
\mathrm{Tl}
Tl
.
See Solution
Problem 19545
Find the inverse function
f
−
1
f^{-1}
f
−
1
for
f
(
x
)
=
(
x
8
+
1
)
−
1
,
(
−
∞
,
0
]
f(x)=\left(x^{8}+1\right)^{-1}, \quad(-\infty, 0]
f
(
x
)
=
(
x
8
+
1
)
−
1
,
(
−
∞
,
0
]
.
See Solution
Problem 19546
Is the function
f
(
x
)
f(x)
f
(
x
)
continuous at
x
=
−
1
x=-1
x
=
−
1
, where
f
(
x
)
=
∣
x
+
2
∣
f(x)=|x+2|
f
(
x
)
=
∣
x
+
2∣
if
x
≠
−
1
x \neq -1
x
=
−
1
and
f
(
−
1
)
=
−
1
f(-1)=-1
f
(
−
1
)
=
−
1
?
See Solution
Problem 19547
Is the function
f
(
x
)
=
tan
(
2
π
x
)
f(x)=\tan \left(\frac{2}{\pi} x\right)
f
(
x
)
=
tan
(
π
2
x
)
continuous at
x
=
c
x=c
x
=
c
, where
c
=
π
2
c=\frac{\pi}{2}
c
=
2
π
?
See Solution
Problem 19548
Is the function
f
(
x
)
=
{
1
ln
x
−
π
/
2
if
x
>
e
π
0
if
x
⩽
e
π
f(x)=\left\{\begin{array}{ll}\frac{1}{\ln \sqrt{x}-\pi / 2} & \text { if } x>e^{\pi} \\ 0 & \text { if } x \leqslant e^{\pi}\end{array}\right.
f
(
x
)
=
{
l
n
x
−
π
/2
1
0
if
x
>
e
π
if
x
⩽
e
π
continuous at
x
=
e
π
x=e^{\pi}
x
=
e
π
?
See Solution
Problem 19549
Find the value of
f
(
x
)
=
5
sin
−
1
(
sin
(
x
)
)
+
3
cos
−
1
(
sin
(
4
x
)
)
f(x)=5 \sin^{-1}(\sin(x)) + 3 \cos^{-1}(\sin(4x))
f
(
x
)
=
5
sin
−
1
(
sin
(
x
))
+
3
cos
−
1
(
sin
(
4
x
))
at
x
=
π
3
x=\frac{\pi}{3}
x
=
3
π
.
See Solution
Problem 19550
Find the value of
sin
−
1
[
sin
(
−
7
π
6
)
]
\sin ^{-1}\left[\sin \left(-\frac{7 \pi}{6}\right)\right]
sin
−
1
[
sin
(
−
6
7
π
)
]
without a calculator.
See Solution
Problem 19551
Simplify
cot
(
sin
−
1
(
x
)
)
\cot \left(\sin ^{-1}(x)\right)
cot
(
sin
−
1
(
x
)
)
using a triangle or trigonometric identity, assuming
x
>
0
x > 0
x
>
0
.
See Solution
Problem 19552
Find the value of the trigonometric expression:
tan
[
sec
−
1
(
−
5
)
]
\tan \left[\sec ^{-1}(-5)\right]
tan
[
sec
−
1
(
−
5
)
]
.
See Solution
Problem 19553
Check if the function
f
(
x
)
f(x)
f
(
x
)
is continuous at
x
=
0
x=0
x
=
0
, where
f
(
x
)
=
{
arctan
1
x
if
x
>
0
x
+
π
2
if
x
≤
0
f(x)=\begin{cases}\arctan \frac{1}{x} & \text{if } x>0 \\ x+\frac{\pi}{2} & \text{if } x \leq 0\end{cases}
f
(
x
)
=
{
arctan
x
1
x
+
2
π
if
x
>
0
if
x
≤
0
.
See Solution
Problem 19554
Convert
0.0001
d
g
0.0001 \mathrm{dg}
0.0001
dg
to picograms (pg) using the SI unit conversion method.
See Solution
Problem 19555
Is the function
f
(
x
)
=
e
ln
x
f(x)=e^{\ln x}
f
(
x
)
=
e
l
n
x
continuous at
x
=
0
x=0
x
=
0
?
See Solution
Problem 19556
Find the value of
cos
(
cot
−
1
(
10
)
)
\cos \left(\cot ^{-1}(10)\right)
cos
(
cot
−
1
(
10
)
)
using trigonometric identities.
See Solution
Problem 19557
Is the piecewise function
f
(
x
)
=
{
2
∣
x
∣
if
x
⩾
−
2
2
x
if
x
<
−
2
f(x)=\left\{\begin{array}{ll} 2|x| & \text{if } x \geqslant -2 \\ 2x & \text{if } x < -2 \end{array}\right.
f
(
x
)
=
{
2∣
x
∣
2
x
if
x
⩾
−
2
if
x
<
−
2
continuous at
x
=
c
x=c
x
=
c
, where
c
=
−
2
c=-2
c
=
−
2
?
See Solution
Problem 19558
Find the largest domain for which
f
(
x
)
=
9
−
x
f(x)=9-x
f
(
x
)
=
9
−
x
is one-to-one, then provide the inverse function for that domain. Use interval notation.
See Solution
Problem 19559
Is the function
f
(
x
)
=
{
sin
2
x
+
cos
2
x
if
x
>
1
1
if
x
⩽
1
f(x)=\left\{\begin{array}{ll}\sqrt{\sin ^{2} x+\cos ^{2} x} & \text { if } x>1 \\ 1 & \text { if } x \leqslant 1\end{array}\right.
f
(
x
)
=
{
sin
2
x
+
cos
2
x
1
if
x
>
1
if
x
⩽
1
continuous at
x
=
1
x=1
x
=
1
?
See Solution
Problem 19560
Is the function
f
(
x
)
=
{
x
+
4
−
2
x
if
x
>
0
x
−
0.25
if
x
⩽
0
f(x)=\left\{\begin{array}{ll}\frac{\sqrt{x+4}-2}{x} & \text { if } x>0 \\ x-0.25 & \text { if } x \leqslant 0\end{array}\right.
f
(
x
)
=
{
x
x
+
4
−
2
x
−
0.25
if
x
>
0
if
x
⩽
0
continuous at
x
=
c
x = c
x
=
c
? Explain.
See Solution
Problem 19561
Check if the function
f
(
x
)
=
{
x
+
4
−
2
x
if
x
>
0
x
−
0.25
if
x
≤
0
f(x)=\begin{cases} \frac{\sqrt{x+4}-2}{x} & \text{if } x > 0 \\ x-0.25 & \text{if } x \leq 0 \end{cases}
f
(
x
)
=
{
x
x
+
4
−
2
x
−
0.25
if
x
>
0
if
x
≤
0
is continuous at
x
=
0
x=0
x
=
0
.
See Solution
Problem 19562
Find the value of
c
c
c
for the piecewise function
f
(
x
)
=
{
2
x
+
c
,
x
≤
1
;
x
2
+
3
,
x
>
1
}
f(x)=\{2x+c, x \leq 1; x^2+3, x>1\}
f
(
x
)
=
{
2
x
+
c
,
x
≤
1
;
x
2
+
3
,
x
>
1
}
to be continuous.
See Solution
Problem 19563
Solve for
a
×
d
a \times d
a
×
d
given
a
+
4
a
−
4
=
b
+
5
b
−
5
=
c
+
7
c
−
7
=
d
+
9
d
−
9
\frac{a+4}{a-4}=\frac{b+5}{b-5}=\frac{c+7}{c-7}=\frac{d+9}{d-9}
a
−
4
a
+
4
=
b
−
5
b
+
5
=
c
−
7
c
+
7
=
d
−
9
d
+
9
and
a
+
b
+
c
+
d
=
125
a+b+c+d=125
a
+
b
+
c
+
d
=
125
.
See Solution
Problem 19564
Resuelve:
a
+
4
a
−
4
=
b
+
5
b
−
5
=
c
+
7
c
−
7
=
d
+
9
d
−
9
\frac{a+4}{a-4}=\frac{b+5}{b-5}=\frac{c+7}{c-7}=\frac{d+9}{d-9}
a
−
4
a
+
4
=
b
−
5
b
+
5
=
c
−
7
c
+
7
=
d
−
9
d
+
9
y
a
+
b
+
c
+
d
=
125
a+b+c+d=125
a
+
b
+
c
+
d
=
125
; halla el «axd».
See Solution
Problem 19565
Solve for
y
y
y
in the equation
3
y
+
7
3
=
43
3
3y + \frac{7}{3} = \frac{43}{3}
3
y
+
3
7
=
3
43
.
See Solution
Problem 19566
Simplify the expression
(
a
β
3
)
(
a
−
2
β
4
)
5
\left(a \beta^{3}\right)\left(a^{-2} \beta^{4}\right)^{5}
(
a
β
3
)
(
a
−
2
β
4
)
5
.
See Solution
Problem 19567
Solve for
x
x
x
in the equation:
18
=
6
×
x
18 = 6 \times x
18
=
6
×
x
. What is
x
x
x
?
See Solution
Problem 19568
Solve the equations:
T
−
4
−
25
=
T-4-25=
T
−
4
−
25
=
,
37
−
12
=
37-12=
37
−
12
=
,
17
−
18
=
17-18=
17
−
18
=
,
10
−
2
=
10-2=
10
−
2
=
,
−
11
+
4
=
-11+4=
−
11
+
4
=
,
−
30
−
20
=
-30-20=
−
30
−
20
=
,
−
1
+
8
=
-1+8=
−
1
+
8
=
.
See Solution
Problem 19569
Solve for
k
k
k
in the equation:
−
10
k
+
1
=
40
−
7
k
-10 k + 1 = 40 - 7 k
−
10
k
+
1
=
40
−
7
k
.
See Solution
Problem 19570
Solve for
a
a
a
in the equation:
−
16
−
7
(
2
a
+
3
)
=
23
−
2
a
-16-7(2 a+3)=23-2 a
−
16
−
7
(
2
a
+
3
)
=
23
−
2
a
.
See Solution
Problem 19571
Solve the equation
2
(
4
w
−
1
)
=
−
10
(
w
−
3
)
+
4
2(4w - 1) = -10(w - 3) + 4
2
(
4
w
−
1
)
=
−
10
(
w
−
3
)
+
4
.
See Solution
Problem 19572
Solve the equation:
5
x
−
(
x
−
18
)
=
6
−
2
(
x
+
15
)
5x - (x - 18) = 6 - 2(x + 15)
5
x
−
(
x
−
18
)
=
6
−
2
(
x
+
15
)
.
See Solution
Problem 19573
Solve the equation
8
(
y
+
4
)
−
2
(
y
−
1
)
=
70
−
3
y
8(y+4)-2(y-1)=70-3y
8
(
y
+
4
)
−
2
(
y
−
1
)
=
70
−
3
y
.
See Solution
Problem 19574
Solve the equation:
8
(
5
x
−
3
)
=
6
(
−
3
x
−
4
)
8(5x - 3) = 6(-3x - 4)
8
(
5
x
−
3
)
=
6
(
−
3
x
−
4
)
.
See Solution
Problem 19575
Solve the equation:
3
(
2
x
+
2
)
−
3
x
=
6
+
3
x
3(2x + 2) - 3x = 6 + 3x
3
(
2
x
+
2
)
−
3
x
=
6
+
3
x
.
See Solution
Problem 19576
Solve the equation:
6
(
2
x
−
6
)
=
−
7
(
−
2
x
+
4
)
6(2 x-6)=-7(-2 x+4)
6
(
2
x
−
6
)
=
−
7
(
−
2
x
+
4
)
.
See Solution
Problem 19577
Solve for
h
h
h
in the equation:
11
h
−
(
2
h
−
1
)
=
118
11 h - (2 h - 1) = 118
11
h
−
(
2
h
−
1
)
=
118
.
See Solution
Problem 19578
Solve the equation:
3
x
−
13
=
7
(
x
+
2
)
−
4
(
x
−
7
)
3x - 13 = 7(x + 2) - 4(x - 7)
3
x
−
13
=
7
(
x
+
2
)
−
4
(
x
−
7
)
.
See Solution
Problem 19579
Find the inverse of the function
f
(
x
)
=
3
(
4
x
−
1
)
1
/
3
f(x)=3(4 x-1)^{1/3}
f
(
x
)
=
3
(
4
x
−
1
)
1/3
.
See Solution
Problem 19580
Solve for
x
x
x
in the equation
−
25
=
1
2
(
10
x
−
2
)
+
3
x
-25=\frac{1}{2}(10 x-2)+3 x
−
25
=
2
1
(
10
x
−
2
)
+
3
x
.
See Solution
Problem 19581
Solve the equation
x
2
+
8
x
+
5
=
0
x^{2}+8x+5=0
x
2
+
8
x
+
5
=
0
by completing the square.
See Solution
Problem 19582
Solve the equation
x
2
+
7
x
−
3
=
0
x^{2}+7x-3=0
x
2
+
7
x
−
3
=
0
.
See Solution
Problem 19583
Solve the following by completing the square: (a)
x
2
+
8
x
+
5
=
0
x^{2}+8x+5=0
x
2
+
8
x
+
5
=
0
, (c)
x
2
−
11
x
−
7
=
0
x^{2}-11x-7=0
x
2
−
11
x
−
7
=
0
.
See Solution
Problem 19584
Solve the equation
x
2
−
11
x
−
7
=
0
x^{2}-11 x-7=0
x
2
−
11
x
−
7
=
0
.
See Solution
Problem 19585
Solve the equation
x
2
+
1.2
x
=
1
x^{2}+1.2 x=1
x
2
+
1.2
x
=
1
.
See Solution
Problem 19586
Calculate
10
×
10
10 \times 10
10
×
10
using the equation:
C
×
10
+
−
×
10
=
10
×
10
C \times 10 + - \times 10 = 10 \times 10
C
×
10
+
−
×
10
=
10
×
10
. What is
10
×
10
10 \times 10
10
×
10
?
See Solution
Problem 19587
Is
g
(
x
)
=
2
−
x
5
5
g(x)=\frac{2-x^{5}}{5}
g
(
x
)
=
5
2
−
x
5
a polynomial? Choose A (degree), B (not nonnegative integer), or C (ratio of polynomials).
See Solution
Problem 19588
Determine if
f
(
x
)
=
5
x
+
x
2
f(x)=5x+x^{2}
f
(
x
)
=
5
x
+
x
2
is a polynomial. Choose: A. Not a polynomial, B. Polynomial of degree, C. No constant term.
See Solution
Problem 19589
Determine if
g
(
x
)
=
2
−
x
5
5
g(x)=\frac{2-x^{5}}{5}
g
(
x
)
=
5
2
−
x
5
is a polynomial. Choose A, B, or C and complete if needed.
See Solution
Problem 19590
Determine if
f
(
x
)
=
9
−
6
x
3
f(x)=9-\frac{6}{x^{3}}
f
(
x
)
=
9
−
x
3
6
is a polynomial. Choose A (not a polynomial) or B (is a polynomial) and explain.
See Solution
Problem 19591
Determine if
f
(
x
)
=
9
−
6
x
3
f(x)=9-\frac{6}{x^{3}}
f
(
x
)
=
9
−
x
3
6
is a polynomial. If yes, state the degree; if no, explain why.
See Solution
Problem 19592
Find the value of
O
Δ
Δ
O
Δ
O \Delta \Delta O \Delta
O
ΔΔ
O
Δ
given the equations:
00000
=
0
00000=0
00000
=
0
,
0000
Δ
=
10
0000 \Delta=10
0000Δ
=
10
,
000
Δ
O
=
20
000 \Delta O=20
000Δ
O
=
20
,
000
Δ
Δ
=
30
000 \Delta \Delta=30
000ΔΔ
=
30
,
00
Δ
O
Δ
=
50
00 \Delta O \Delta=50
00Δ
O
Δ
=
50
,
00
Δ
Δ
O
=
60
00 \Delta \Delta O=60
00ΔΔ
O
=
60
.
See Solution
Problem 19593
ก. แก้สมการ
2
x
+
3
=
12
2 x+3=12
2
x
+
3
=
12
ฝ. แก้สมการ
2
x
−
3
=
11
2 x-3=11
2
x
−
3
=
11
See Solution
Problem 19594
Find the value of
3
−
2
3^{-2}
3
−
2
. A.
1
9
\frac{1}{9}
9
1
B. -6 C.
−
1
9
-\frac{1}{9}
−
9
1
D. -9
See Solution
Problem 19595
Calculate
60
÷
2
(
3
+
7
)
60 \div 2(3+7)
60
÷
2
(
3
+
7
)
.
See Solution
Problem 19596
Simplify
2
3
⋅
2
7
2^{3} \cdot 2^{7}
2
3
⋅
2
7
. Options: A.
2
21
2^{21}
2
21
B.
2
9
2^{9}
2
9
C.
2
−
4
2^{-4}
2
−
4
D.
2
10
2^{10}
2
10
See Solution
Problem 19597
Evaluate
−
7
−
3
⋅
7
5
-7^{-3} \cdot 7^{5}
−
7
−
3
⋅
7
5
. Choose the correct answer: A.
−
1
49
-\frac{1}{49}
−
49
1
B. 49 C.
1
49
\frac{1}{49}
49
1
D. -49
See Solution
Problem 19598
Simplify
1
2
2
⋅
1
2
3
12^{2} \cdot 12^{3}
1
2
2
⋅
1
2
3
. Options: A.
1
2
5
12^{5}
1
2
5
B.
1
2
6
12^{6}
1
2
6
C.
14
4
5
144^{5}
14
4
5
D.
2
4
5
24^{5}
2
4
5
See Solution
Problem 19599
Solve for
x
x
x
in the equation:
1
x
2
=
1
5
2
+
1
7
2
\frac{1}{x^{2}}=\frac{1}{5^{2}}+\frac{1}{7^{2}}
x
2
1
=
5
2
1
+
7
2
1
.
See Solution
Problem 19600
Solve the equation
4
x
−
5
y
=
20
4x - 5y = 20
4
x
−
5
y
=
20
for
y
y
y
in terms of
x
x
x
.
See Solution
<
1
...
193
194
195
196
197
198
199
...
269
>
Start learning now
Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.
Download on the
App Store
Get it on
Google Play
Parents
Influencer program
Contact
Policy
Terms