Math Statement

Problem 19101

expand g(x)=(x3)4g(x)=(x-3)^{4}

See Solution

Problem 19102

10) (x6)249(y9)2121=1\frac{(x-6)^{2}}{49}-\frac{(y-9)^{2}}{121}=1 A) Vertices: (17,9),(5,9)(17,9),(-5,9)
Foci: (6+170,9),(6170,9)(6+\sqrt{170}, 9),(6-\sqrt{170}, 9) Opens leftright B) Vertices: (9,17),(9,5)(-9,17),(-9,-5)
Foci: (9,6+170),(9,6170)(-9,6+\sqrt{170}),(-9,6-\sqrt{170}) Opens upldown C) Vertices: (13,9),(1,9)(13,9),(-1,9)
Foci: (6+170,9),(6170,9)(6+\sqrt{170}, 9),(6-\sqrt{170}, 9) Opens leftright D) Vertices: (6,16),(6,2)(6,16),(6,2)
Foci: (6,9+170),(6,9170)(6,9+\sqrt{170}),(6,9-\sqrt{170})

See Solution

Problem 19103

Polynomials and Factoring Factoring out a monomial from a polynomlal: Univariate
Factor 16w+20w216 w+20 w^{2}. \square

See Solution

Problem 19104

Solve the following polynomial using synthetic division. x3+8x2+11x20=0x=x=x=\begin{array}{l} x^{3}+8 x^{2}+11 x-20=0 \\ x=\square \\ x=\square \\ x=\square \end{array}

See Solution

Problem 19105

Use the definition of a one-to-one function to determine if the function is one-to-one. k(x)=x316k(x)=x^{3}-16 The function is one-to-one. The function is not one-to-one.

See Solution

Problem 19106

sin(30)=12,tan(30)=33\sin \left(30^{\circ}\right)=\frac{1}{2}, \tan \left(30^{\circ}\right)=\frac{\sqrt{3}}{3} (a) csc(30)\csc \left(30^{\circ}\right) \square (b) cot(60)\cot \left(60^{\circ}\right) \square (c) cos(30)\cos \left(30^{\circ}\right) \square (d) cot(30)\cot \left(30^{\circ}\right) \square Need Help? Read It Watch It Submit Answer

See Solution

Problem 19107

=24=24 12) Vertices: (6,14),(6,10)(6,14),(6,-10) 2.
Foci: (6,15),(6,11)(6,15),(6,-11) A) (y2)2144(x6)225=1\frac{(y-2)^{2}}{144}-\frac{(x-6)^{2}}{25}=1 B) (y2)2144(x+6)225=1\frac{(y-2)^{2}}{144}-\frac{(x+6)^{2}}{25}=1 4=254=25 c) (y+2)225(x6)2144=1\frac{(y+2)^{2}}{25}-\frac{(x-6)^{2}}{144}=1 D) (y2)225(x6)2144=1\frac{(y-2)^{2}}{25}-\frac{(x-6)^{2}}{144}=1

See Solution

Problem 19108

343-4. State the answer as an ordered pair (x,y)(x, y), if possible.
3. Solve {y=4x1y=12x+8\left\{\begin{array}{c}y=4 x-1 \\ y=-\frac{1}{2} x+8\end{array}\right. by graphing.

See Solution

Problem 19109

Use the properties of logarithms to rewrite the expression log5(x9)\log _{5}\left(x^{9}\right). Write your answer without any powers. log5(x9)=\log _{5}\left(x^{9}\right)=
Enter your next step here \square

See Solution

Problem 19110

Solve the following quadratic equation for all values of xx in simplest form. 6+3x2=186+3 x^{2}=18
Answer Attempt 1 out of 2 † Additional Solution No Solution x=x= \square Submit Answer

See Solution

Problem 19111

5. Prove the following trigonometric identity. (4 marks) cos2xsecx1tan2x=cosxcos2θsin2θ(1cosx)\begin{array}{c} \frac{\cos 2 x \sec x}{1-\tan ^{2} x}=\cos x \\ \cos ^{2} \theta-\sin ^{2} \theta\left(\frac{1}{\cos x}\right) \end{array}

See Solution

Problem 19112

Problème 3. Soit f(x)=3x+1f(x)=\sqrt{3 x+1}. (a) Trouver la dérivée de f(x)f(x) à l'aide de la définition de la dérivée par une limite. Aucun point ne sera attribué pour une réponse utilisant les règles de dérivation. (b) Trouver le(s) point(s) de la courbe y=3x+1y=\sqrt{3 x+1} où la tangente est parallèle à la droite d'équation 3x8y=53 x-8 y=5.

See Solution

Problem 19113

3. f(x)=11x2f(x)=\frac{1}{\sqrt{1-x^{2}}}

See Solution

Problem 19114

Find a formula for the inverse of the function. f(x)=x2+2x,x>0.f1(x)=\begin{array}{l} f(x)=\sqrt{x^{2}+2 x}, x>0 . \\ f^{-1}(x)= \end{array}

See Solution

Problem 19115

10. Calculate the value of the following series: k=21(3k+1)(3k+4)\sum_{k=2}^{\infty} \frac{1}{(3 k+1)(3 k+4)}

See Solution

Problem 19116

What is the leading coefficient? 2x63x5+15x42 x^{6}-3 x^{5}+15 x^{4}
15 1 Answer 15\triangle 15 20
6 2 Dowe G kahoot.it Game PIN: 7617209

See Solution

Problem 19117

7. Simplify the following: 3sin(2x)cos(2x)3 \sin (2 x) \cos (2 x) a. 1.5sin(2x)1.5 \sin (2 x) b. 6sin(4x)6 \sin (4 x) c. 1.5sin(4x)1.5 \sin (4 x)

See Solution

Problem 19118

Solve for hh. h+3>9h+3>9

See Solution

Problem 19119

Question 6
Reputable scientists know that the average surface temperature of the world has been rising steadily. One model found using sets of temperature data is: T=0.02t+15.0T=0.02 t+15.0
Where T is temperature in C{ }^{\circ} C and t is years since 1950. (a) Describe what the slope and T-intercept represent. (b) Use the equation to predict the average globle surface temperature in 2050. \square C{ }^{\circ} \mathrm{C}
Question Help: Message instructor Post to forum Submit Question

See Solution

Problem 19120

7 Si f(x)=x2f(x)=x^{2}, ¿qué función es el resultado de desplazar f(x)3f(x) 3 unidades hacia la izquierda y 2 unidades hacia abajo? (1) g(x)=(x+2)23g(x)=(x+2)^{2}-3 (3) j(x)=(x+3)22j(x)=(x+3)^{2}-2 (2) h(x)=(x2)2+3h(x)=(x-2)^{2}+3 (4) k(x)=(x3)2+2k(x)=(x-3)^{2}+2
8 La ecuación utilizada para calcular la velocidad de un objeto es la siguiente: v2=u2+2asv^{2}=u^{2}+2 a s, donde uu es la velocidad inicial, vv es la velocidad final, aa es la aceleración del objeto y ss es la distancia recorrida. Cuando se resuelve esta ecuación para aa, el resultado es (1) a=v2u22sa=\frac{v^{2} u^{2}}{2 s} (3) a=v2u22sa=v^{2}-u^{2}-2 s (2) a=v2u22sa=\frac{v^{2}-u^{2}}{2 s} (4) a=2s(v2u2)a=2 s\left(v^{2}-u^{2}\right)
9 La clase de Matemáticas de la Sra. Smith hizo una encuestó a los estudiantes para determinar sus sabores favoritos de helado. Los resultados se muestran en la siguiente tabla. \begin{tabular}{|c|c|c|c|} \cline { 2 - 4 } \multicolumn{1}{c|}{} & Chocolate & Vainilla & Combinado \\ \hline 11. ^{\circ} grado & 42 & 27 & 45 \\ \hline 12. ^{\circ} grado & 67 & 42 & 21 \\ \hline \end{tabular}
De los estudiantes que prefieren chocolate, Aproximadamente, ¿qué porcentaje era de 12.12 .^{\circ} grado? (1) 27.5 (3) 51.5 (2) 44.7 (4) 61.5

See Solution

Problem 19121

16. x123=3\sqrt[3]{x-12}=3
17. 5x+649=0\sqrt[4]{5 x+6}-9=0
18. 13x6=4\sqrt{1-3 x}-6=4
19. 3x23=753 x^{\frac{2}{3}}=75

See Solution

Problem 19122

2. Write each fraction as a decimal. 14=15=\frac{1}{4}=\quad \frac{1}{5}=

See Solution

Problem 19123

Mathematics 30-2
14. Write log5a+log5b(log5c+log5d)\log _{5} a+\log _{5} b-\left(\log _{5} c+\log _{5} d\right) as a single logarithm. A) log5abcd\log _{5} \frac{a}{b c d} B) log5abcd\log _{5} \frac{a b}{c d} C) log5abcd\log _{5} \frac{a b c}{d} D) log5abcd\log _{5} a b c d

See Solution

Problem 19124

Factor completely 4x520x436x34 x^{5}-20 x^{4}-36 x^{3}. 4(x55x49x3)4\left(x^{5}-5 x^{4}-9 x^{3}\right) x3(4x220x36)x^{3}\left(4 x^{2}-20 x-36\right) x25x9x^{2}-5 x-9 4x3(x25x9)4 x^{3}\left(x^{2}-5 x-9\right)

See Solution

Problem 19125

Find limx2sin1(x2)\lim _{x \rightarrow 2^{-}} \sin ^{-1}\left(\frac{x}{2}\right) limx2sin1(x2)=\lim _{x \rightarrow 2^{-}} \sin ^{-1}\left(\frac{x}{2}\right)=\square (Type an exact answer, using π\pi as needed.)

See Solution

Problem 19126

n, using a calculator if necessary to evaluate the logarithm. Write your answer as a fraction or ro ln(ex)=15.1\ln \left(\mathrm{e}^{\mathrm{x}}\right)=15.1 w window) x=x= \square

See Solution

Problem 19127

Warm Up Solve the following radical equation for xx. 82x+310=308 \sqrt{2 x+3}-10=30

See Solution

Problem 19128

10. f(x)=2x+1,g(x)=xx+1f(x)=\frac{2}{x+1}, g(x)=\frac{x}{x+1}
Find the domain of the function.

See Solution

Problem 19129

5 Résolvez les équations suivantes. a) 5x2+160x1200=0-5 x^{2}+160 x-1200=0

See Solution

Problem 19130

Find the derivative of the function f(x)=(9x6+9x)15 f(x) = (9x^6 + 9x)^{15} .

See Solution

Problem 19131

Consider the quadratic function y=1.7x29.1x+2.3y=1.7 x^{2}-9.1 x+2.3 The graph of this function is a Select an answer Question Help: Message in:
Select an answer straight line that slopes downward Submit Part Jump to Ans parabola that opens downward straight line that slopes upward parabola that opens upward

See Solution

Problem 19132

Expand the function f(x)=11x4 f(x) = \frac{1}{1-x^4} in a power series with the center c=0 c=0 and determine the interval of convergence.

See Solution

Problem 19133

onsider the quadratic function y=1.7x29.1x+2.3y=1.7 x^{2}-9.1 x+2.3 The graph of this function is a parabola that opens upward 0s\checkmark^{\checkmark} 0^{s} \square 0
The vertex of this graph is its lowest \checkmark \checkmark point, so this function has a minimum 080^{8} value. \square Part 2 of 4 \qquad State the vertex (x,y)(x, y) of this parabola. If necessary, round each value to three decimal places. 2.6760s - )\begin{array}{l} 2.676 \\ 0^{s} \\ \text { - }) \end{array} 9.878-9.878 Part 4 of 4
Fill in the blanks to interpret the vertex. If necessary, round each value to three decimal places. The minimum value of this function is \square , which occurs at an xx value of \square .

See Solution

Problem 19134

Are the systems of equations equivalent? Explain. 2x+4y=36x+12y=96x+3y=176x+3y=17\begin{array}{rlrl} 2 x+4 y & =3 & 6 x+12 y & =9 \\ 6 x+3 y & =17 & 6 x+3 y & =17 \end{array}
The first equation in the second system \square in the first system, and the second equation in the second system \square in the first system. Thus, the systems \square equivalent.

See Solution

Problem 19135

Find all excluded values for the expression. That is, find all values of ww for which the expression is undefined. w+6w+7\frac{w+6}{w+7}
If there is more than one value, separate them with commas. w=w= \square

See Solution

Problem 19136

This is a multi-part problem. If F(t)=t33+4t2tF(t)=\frac{t^{3}}{3}+4 t^{2}-t, find F(t)F^{\prime}(t). F(x)=F^{\prime}\left(\frac{x^{\prime}}{\prime}\right)= \square Preview My Answers Submit Answers Show me another

See Solution

Problem 19137

Determine whether the ordered pair is a solution to the inequality. 5x+6y>305 x+6 y>30 (a) (1,2)(-1,2) (b) (4,1)(4,-1) (c) (6,0)(6,0)

See Solution

Problem 19138

Use properties of rational numbers to multiply the following. 65×3.875-\frac{6}{5} \times 3.875 A. 10740\frac{107}{40} B. 245-\frac{24}{5} C. 9320-\frac{93}{20} D. 15548-\frac{155}{48}

See Solution

Problem 19139

xx+31+1x+3\frac{\frac{x}{x+3}}{1+\frac{1}{x+3}}

See Solution

Problem 19140

4. If f(x)=ln(lnx)f(x)=\ln (\ln x), then f(x)=f^{\prime}(x)=

See Solution

Problem 19141

SECTION 3.4 Exercises perercises 1-12, assuming xx and yy are positive, use properties of 1 /nulup les of logarithms.
1. ln8x\ln 8 x
2. ln9y\ln 9 y
3. 103x10 \frac{3}{x}
4. log2y\log \frac{2}{y}
5. log2y5\log _{2} y^{5}
6. log2x2\log _{2} x^{-2}
7. logx3y2\log x^{3} y^{2}
8. logxy3\log x y^{3}
9. lnx2y3\ln \frac{x^{2}}{y^{3}}
10. log1000x4\log 1000 x^{4}
11. logxy4\log \sqrt[4]{\frac{x}{y}}
12. lnx3y3\ln \frac{\sqrt[3]{x}}{\sqrt[3]{y}}

See Solution

Problem 19142

Use the definition of a one-to-one function to determine if the function is one-to-one. k(x)=x1k(x)=|x-1| The function is one-to-one. The function is not one-to-one.

See Solution

Problem 19143

ex7x5dx=\int \frac{e^{x}-7 x}{5} d x=

See Solution

Problem 19144

Using the substitution 3sin(u)=x3 \sin (u)=x, we obtain x29x2dx=Ksinmucosnudu\int x^{2} \sqrt{9-x^{2}} d x=\int K \sin ^{m} u \cos ^{n} u d u where the constants K=K= \square \square m=m= and n=n= \square .
Using this result and your knowledge about indefinite integrals of powers of sinu\sin u and cosu\cos u, find the indefinite integral x29x2dx=+C\int x^{2} \sqrt{9-x^{2}} d x=\square+C
Note: Your answer should be in terms of xx, not uu.

See Solution

Problem 19145

Evaluate. 14(5x3+8)dx\int_{1}^{4}\left(5 x^{3}+8\right) d x

See Solution

Problem 19146

h(x)=x36x2+15h(x)=x^{3}-6 x^{2}+15 relative minimum (x,y)=((x, y)=( \square ) relative maximum (x,y)=((x, y)=( \square

See Solution

Problem 19147

Math and Physics Power and quotient rules with positive exponents
Simplify. (3b2)2(2b3)3\frac{\left(3 b^{2}\right)^{2}}{\left(2 b^{3}\right)^{3}}
Write your answer using only positive exponents.

See Solution

Problem 19148

Multiple Choice 1 point Which of the following describes the following arrow notation? f(x)f(x) \rightarrow \infty As xx approaches infinity, xx increases without bound. As the output approaches infinity, the output increases without bound. As xx approaches negative infinity, xx decreases without bound. As the output approaches negative infinity, the output decreases without bound.

See Solution

Problem 19149

An electric current, II, in amps, is given by I=cos(wt)+3sin(wt),I=\cos (w t)+\sqrt{3} \sin (w t), where w0w \neq 0 is a constant. What are the maximum and minimum values of II ? Minimum value of II : \square amp
Maximum value of II : \square amp
Note: You can earn partial credit on this problem.

See Solution

Problem 19150

Make xx the subject of x9=rx-9=r

See Solution

Problem 19151

Eng. Math, 2 y=n=0(1)nxn+1(n+1)y=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n+1}}{(n+1)} is asolution for D.E (x+1)2y+(x+1)y=0(x+1)^{2} y^{\prime \prime}+(x+1) y^{\prime}=0 Select one: a) True b) False

See Solution

Problem 19152

Make xx the subject of 5x=r5 x=r

See Solution

Problem 19153

Find the average value of the function f(x)=x23f(x)=x^{2}-3 on [0,3][0,3]

See Solution

Problem 19154

Rearrange g=frg=f r to make ff the subject.

See Solution

Problem 19155

Use the function below to answer the following questions. n(x)=ex+3n(x)=-e^{x}+3 (a) Use transformations of the graph of y=exy=e^{x} to graph the given function. (b) Write the domain and range in interval notation. (c) Write an equation of the asymptote.
Part: 0/30 / 3
Part 1 of 3

See Solution

Problem 19156

Rearrange k=dwk=d w to make dd the subject.

See Solution

Problem 19157

Rearrange aky=ca k-y=c to make kk the subject.

See Solution

Problem 19158

Use the function below to answer the following questions. m(x)=5x+4m(x)=5^{x+4} (a) Use transformations of the graph of y=5xy=5^{x} to graph the given function. (b) Write the domain and range in interval notation. (c) Write an equation of the asymptote.
Part: 0/30 / 3

See Solution

Problem 19159

Make kk the subject of d=k+m2d=\frac{k+m}{2}

See Solution

Problem 19160

Which of the following is equivalent to i26i^{26} ? -1 i-i 1 i

See Solution

Problem 19161

Directions: Solve, graph, and write the solution to each inequality in interval notation.
1. b+37|b+3| \geq 7

Interval Notation:
3. 5k+436|5 k+4| \geq 36

Interval Notation:
5. n76>5\left|\frac{n}{7}\right|-6>-5

Interval Notation:
2. 2v4<8|-2 v-4|<8

Interval Notation:
4. 39y33|3-9 y| \leq 33

Interval Notation:
6. 5+3w21\frac{|5+3 w|}{-2} \leq-1

Interval Notation: Gina Wilson (All Things Algebra), 201

See Solution

Problem 19162

x22x80x^{2}-2 x-8 \leq 0

See Solution

Problem 19163

\begin{tabular}{|l|l|l|} \hline \multicolumn{2}{|c|}{ EXAMEN PARCIAL 3 } & \\ \hline Materia & Cálculo Diferencial & \\ \hline Semestre & 2 \\ \hline Carrera & Tecnología en Obras Civiles & \\ \hline \end{tabular}
1. Resuelva las siguientes derivadas usando la Regla de la cadena a. h(t)=2cos(12x)2h(t)=2 \cos (1-2 x)^{2} b. g(x)=xx4+4g(x)=\frac{x}{\sqrt{x^{4}+4}} c. y=5x(x+3)3y=-\frac{5 x}{(x+3)^{3}}
2. Resuelva las siguientes derivadas Implícitas a. xy+1=xy+1x \sqrt{y+1}=x y+1 b. 5xy+2y=x2y+xy3\sqrt{5 x y}+2 y=x^{2} y+x y^{3} c. 3y3x2+4x2y33y2x=12x2+cos(xy)3 y^{3} x^{2}+4 x^{2} y^{3}-\frac{3 y^{2}}{x}=12 x^{2}+\cos (x y) d. 9x2=xy9 x^{2}=\frac{\sqrt{x}}{\sqrt{y}}
3. Resuelva las siguientes derivadas usando una Razón de cambio adecuiada. a. Un globo completamente esférico está siendo inflado a una razón de 3 cm3/s3 \mathrm{~cm} 3 / \mathrm{s}.

See Solution

Problem 19164

For a confidence level of 98%98 \% with a sample size of 21 , find the critical tt-value (also known as the tt-score). \square (round to 3 decimal places)

See Solution

Problem 19165

5x+3y=155 x+3 y=15

See Solution

Problem 19166

Factor the expression completely. 60x4+54x-60 x^{4}+54 x

See Solution

Problem 19167

Solve by completing the square. 3v2+48v75=0-3 v^{2}+48 v-75=0
言A Write your answers as integers, proper or improper fractions in simplest form, or cimals rounded to the nearest hundredth. ) [ix x˙A]=\left.\dot{x}_{A}\right]= \square or v=v= \square

See Solution

Problem 19168

Solve the system by using the addition method. 4x2+y2=376x24y2=50\begin{aligned} 4 x^{2}+y^{2} & =37 \\ 6 x^{2}-4 y^{2} & =50 \end{aligned} There are infinitely many solutions. The solution set is the empty set, }\}. The solution set is a finite set. The solution set is \square \}

See Solution

Problem 19169

Determine the following indefinite integral. (5x+5x)dx(5x+5x)dx=\begin{array}{r} \int\left(\frac{5}{\sqrt{x}}+5 \sqrt{x}\right) d x \\ \int\left(\frac{5}{\sqrt{x}}+5 \sqrt{x}\right) d x= \end{array}

See Solution

Problem 19170

1. (04.02LC)(04.02 \mathrm{LC})
Solve the following system of equations: (1 point) x2y=14x+3y=9\begin{array}{l} x-2 y=14 \\ x+3 y=9 \end{array} (1,12)(1,12) (1,12)(-1,-12) (12,1)(12,-1) (12,1)(12,1)

See Solution

Problem 19171

Solve the following equation: 34x=60\frac{3}{4} x=60

See Solution

Problem 19172

6. (04.02 MC)
A gym offers regular memberships for $80\$ 80 per month and off-peak memberships for $60\$ 60 per month. Last month, the gym sold a total of 420 memberships for a total of $31,100\$ 31,100. The following system of equations models this scenario: 80x+60y=31,100x+y=420\begin{array}{l} 80 x+60 y=31,100 \\ x+y=420 \end{array}
How many of the memberships sold were regular memberships? (1 point) 125 140 235 295

See Solution

Problem 19173

Find the number of solutions by graphing the system of equations. Select "None" if applicable. (Hint: Rewrite the system of equations into familiar forms to graph.) ln7=2lnxlnyx2+y26y+8=0\begin{array}{l} \ln 7=2 \ln x-\ln y \\ x^{2}+y^{2}-6 y+8=0 \end{array}
Number of solutions: \square None

See Solution

Problem 19174

Quadratic and Exponential Functions Graphing a parabola of the form y=ax2+bx+cy=\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c} : Integer coefficier aph the parabola. y=3x230x+69y=3 x^{2}-30 x+69
Plot five points on the parabola: the vertex, two points to the le button.

See Solution

Problem 19175

4) Let f(x)=3x+2,g(x)=x2+2x+1f(x)=3 x+2, g(x)=x^{2}+2 x+1, and h(x)=2x+1x1h(x)=\frac{2 x+1}{x-1} a) Find and simplify (gf)(x),(fg)(x),(ff)(x)(g \circ f)(x),(f \circ g)(x),(f \circ f)(x). b) Find f1f^{-1} and show that the function you found is indeed the inverse of f(x)f(x) c) h(x),x1h(x), x \neq 1 is one-to-one. Find its inverse and check the result.

See Solution

Problem 19176

Find an equation of the form y=ax2+by=a x^{2}+b for a parabola that passes through the points (1,1)(-1,1) and (2,7)(-2,7). y=y=

See Solution

Problem 19177

12. Let a equal the measure of angle AA. The equation 360=a+90+135+75360^{\circ}=a+90^{\circ}+135^{\circ}+75^{\circ} represents the sum of the angles in the quadrilateral. Find the missing angle measure by solving the equation.

See Solution

Problem 19178

Solve the equation. Simplify the answer as much as possible. 27x+5=92x+227^{x+5}=9^{2 x+2}
The solution set is \square \}.

See Solution

Problem 19179

hmic Functions Question 11, 5.4.67
Solve the equation. Use the change of base formula when appropriate. ex=18e^{-x}=18
Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. x=x= \square (Type an integer or decimal rounded to the nearest hundredth as needed.) B. There is no solution.

See Solution

Problem 19180

Using Descartes' Rule of Signs, what can be said about the following polynomial: x34x2+7x10x^{3}-4 x^{2}+7 x-10 ? Since there are two negatives and one positive, there will be only two negative roots. Since there are an even amount of positive and negative signs, there is no solution. Since there is only one variable ( xx ), there will be fewer than three answers. There are three sign changes, meaning this polynomial has up to three positive roots.

See Solution

Problem 19181

unctions Question 13, 5.4.71
Solve the equation. 105x=1000010^{5 x}=10000
Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The solution is x=x= \square . (Type an integer or a fraction.) B. There is no solution.

See Solution

Problem 19182

For the following function ff, find the antiderivative FF that satisfies the given condition. f(v)=15secvtanv,F(0)=1,π2<v<π2F(v)=\begin{array}{l} f(v)=\frac{1}{5} \sec v \tan v, F(0)=1,-\frac{\pi}{2}<v<\frac{\pi}{2} \\ F(v)=\square \end{array} \square

See Solution

Problem 19183

2.6×105 kg moldL=gmolL2.6 \times 10^{-5} \frac{\mathrm{~kg}}{\mathrm{~mol} \cdot \mathrm{dL}}=\square \frac{\mathrm{g}}{\mathrm{mol} \cdot \mathrm{L}}

See Solution

Problem 19184

Part 3 of 3 Points: 0.67 of 1
For the function shown below, complete the following. f(x)=x32x29x+18f(x)=x^{3}-2 x^{2}-9 x+18 a. List all possible zeros. b. Use synthetic division to test the possible rational zeros and find an actual zero. c. Use the quotient from part (b) to find the remaining zeros of the polynomial function. a. List all possible rational zeros. ±1,±2,±3,±6,±9,±18\pm 1, \pm 2, \pm 3, \pm 6, \pm 9, \pm 18 (Use a comma to separate answers as needed.) b. Use synthetic division to test the possible rational zeros and find an actual zero.
One of the actual rational zeros is 2 . c. Use the quotient from part (b) to find the remaining zeros of the polynomial function. Then write all of the zeros of the function.
The solution of f(x)=x32x29x+18f(x)=x^{3}-2 x^{2}-9 x+18 is \square (Type exact answers, using radicals as needed. Use a comma to separate answers as needed.) example Calculator

See Solution

Problem 19185

c3=5m83m7+3c4=6\begin{array}{l}\frac{c}{3}=-5 m-\frac{8}{3} \\ -\frac{m}{7}+\frac{3 c}{4}=-6\end{array}

See Solution

Problem 19186

2. Resuelva las siguientes derivadas Implícitas a. xy+1=xy+1x \sqrt{y+1}=x y+1 b. 5xy+2y=x2y+xy3\sqrt{5 x y}+2 y=x^{2} y+x y^{3} c. 3y3x2+4x2y33y2x=12x2+cos(xy)3 y^{3} x^{2}+4 x^{2} y^{3}-\frac{3 y^{2}}{x}=12 x^{2}+\cos (x y) d. 9x2=xy9 x^{2}=\frac{\sqrt{x}}{\sqrt{y}}

See Solution

Problem 19187

Estimate. 641÷23641 \div 23 \approx
Choose 1 answer: (A) 30 (B) 300 (C) 3,000 (D) 30,000

See Solution

Problem 19188

2÷1=2 \div 1=

See Solution

Problem 19189

Assume XX has a normal distribution N(3,82)N\left(3,8^{2}\right). Find E(8X9)2E(8 X-9)^{2}

See Solution

Problem 19190

12. Find bb such that the function f(x)=3x2+4x+2f(x)=3 x^{2}+4 x+2 has an average value of 10 on the interval [0,b][0, b]. (Ans: b=2b=2 )

See Solution

Problem 19191

x6y=5617y=3x4734\begin{array}{l}x-6 y=\frac{56}{17} \\ y=3 x-\frac{47}{34}\end{array}

See Solution

Problem 19192

2. بين اي من المجموعات التالية تكون متراصة, مع التوضيح {xR:x=1}.3\{x \in R:|x|=1\} \quad .3 [1,1].2[-1,1] .2 [0,1].1[0,1] \quad .1

See Solution

Problem 19193

7r+10p=13792r+6p=163\begin{array}{l}-7 r+10 p=-\frac{137}{9} \\ 2 r+6 p=\frac{16}{3}\end{array}

See Solution

Problem 19194

13. Find dydx\frac{d y}{d x} for the following functions. Do not simplify your answer. a) y=x4log4(x25)y=x^{4} \log _{4}\left(x^{2}-5\right)

See Solution

Problem 19195

9. Find all the critical values of the function below. * y=x44x3+12y=x^{4}-4 x^{3}+12 x=0x=0 only x=0,12,24x=0,12,24 x=3x=3 only x=R3x=R^{3} There are no critical values

See Solution

Problem 19196

Given the following sets, find the set (AB)C(A \cup B)^{\prime} \cap C. U={1,2,3,,9}A={1,2,4,5}B={1,3,8}C={1,3,4,6,7}\begin{array}{l} \mathrm{U}=\{1,2,3, \ldots, 9\} \\ \mathrm{A}=\{1,2,4,5\} \\ \mathrm{B}=\{1,3,8\} \\ \mathrm{C}=\{1,3,4,6,7\} \end{array}
Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. (AB)C=(A \cup B)^{\prime} \cap C= \square \} (Use a comma to separate answers as needed.) B. (AB)C(A \cup B)^{\prime} \cap C is the empty set.

See Solution

Problem 19197

Product-to-Sum Formulas:
1. sin(u)cos(v)=12[sin(u+v))+sin(uv)]\left.\sin (u) \cos (v)=\frac{1}{2}[\sin (u+v))+\sin (u-v)\right]
2. cos(u)sin(v)=12[sin(u+v))sin(uv)]\left.\cos (u) \sin (v)=\frac{1}{2}[\sin (u+v))-\sin (u-v)\right]
3. cos(u)cos(v)=12[cos(u+v))+cos(uv)]\left.\cos (u) \cos (v)=\frac{1}{2}[\cos (u+v))+\cos (u-v)\right]
4. sin(u)sin(v)=12[cos(uv))cos(u+v)]\left.\sin (u) \sin (v)=\frac{1}{2}[\cos (u-v))-\cos (u+v)\right]

Rewrite the expression below using one of the given formulas. sin(3x)sin(5x)\sin (3 x) \sin (5 x) Using formula number one: sin(3x)sin(5x)=12[cos(3x5x)cos(3x+5x)]\sin (3 x) \sin (5 x)=\frac{1}{2}[\cos (3 x-5 x)-\cos (3 x+5 x)] Using formula four: sin(3x)sin(5x)=12[cos(3x+5x)cos(3x5x)]\sin (3 x) \sin (5 x)=\frac{1}{2}[\cos (3 x+5 x)-\cos (3 x-5 x)] Using formula one: sin(3x)sin(5x)=12[cos(3x+5x)cos(3x5x)]\sin (3 x) \sin (5 x)=\frac{1}{2}[\cos (3 x+5 x)-\cos (3 x-5 x)] Using formula number four: sin(3x)sin(5x)=12[cos(3x5x)cos(3x+5x)]\sin (3 x) \sin (5 x)=\frac{1}{2}[\cos (3 x-5 x)-\cos (3 x+5 x)]

See Solution

Problem 19198

61=9c+761=-9 c+7

See Solution

Problem 19199

Question 1 25 pts
Find the solutions of cos(θ)+1=0\cos (\theta)+1=0 when 0θ2π0 \leq \theta \leq 2 \pi. θ=π\theta=\pi θ=π6\theta=\frac{\pi}{6} θ=0,2π\theta=0,2 \pi θ=π2\theta=\frac{\pi}{2} θ=3π2\theta=\frac{3 \pi}{2}

See Solution

Problem 19200

Use the Binomial Theorem to expand the binomial: (x8+x)3\left(x^{8}+\sqrt{x}\right)^{3}

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord