Use the definition of a one-to-one function to determine if the function is one-to-one.
k(x)=x3−16
The function is one-to-one.
The function is not one-to-one.
=24
12) Vertices: (6,14),(6,−10)
2. Foci: (6,15),(6,−11)
A) 144(y−2)2−25(x−6)2=1
B) 144(y−2)2−25(x+6)2=14=25 c) 25(y+2)2−144(x−6)2=1
D) 25(y−2)2−144(x−6)2=1
Solve the following quadratic equation for all values of x in simplest form.
6+3x2=18 Answer Attempt 1 out of 2
† Additional Solution
No Solution
x=□
Submit Answer
Problème 3.
Soit f(x)=3x+1.
(a) Trouver la dérivée de f(x) à l'aide de la définition de la dérivée par une limite. Aucun point ne sera attribué pour une réponse utilisant les règles de dérivation.
(b) Trouver le(s) point(s) de la courbe y=3x+1 où la tangente est parallèle à la droite d'équation 3x−8y=5.
Question 6 Reputable scientists know that the average surface temperature of the world has been rising steadily. One model found using sets of temperature data is:
T=0.02t+15.0 Where T is temperature in ∘C and t is years since 1950.
(a) Describe what the slope and T-intercept represent.
(b) Use the equation to predict the average globle surface temperature in 2050.
□∘C Question Help:
Message instructor
Post to forum
Submit Question
7 Si f(x)=x2, ¿qué función es el resultado de desplazar f(x)3 unidades hacia la izquierda y 2 unidades hacia abajo?
(1) g(x)=(x+2)2−3
(3) j(x)=(x+3)2−2
(2) h(x)=(x−2)2+3
(4) k(x)=(x−3)2+2 8 La ecuación utilizada para calcular la velocidad de un objeto es la siguiente: v2=u2+2as, donde u es la velocidad inicial, v es la velocidad final, a es la aceleración del objeto y s es la distancia recorrida.
Cuando se resuelve esta ecuación para a, el resultado es
(1) a=2sv2u2
(3) a=v2−u2−2s
(2) a=2sv2−u2
(4) a=2s(v2−u2) 9 La clase de Matemáticas de la Sra. Smith hizo una encuestó a los estudiantes para determinar sus sabores favoritos de helado. Los resultados se muestran en la siguiente tabla.
\begin{tabular}{|c|c|c|c|}
\cline { 2 - 4 } \multicolumn{1}{c|}{} & Chocolate & Vainilla & Combinado \\
\hline 11. ∘ grado & 42 & 27 & 45 \\
\hline 12. ∘ grado & 67 & 42 & 21 \\
\hline
\end{tabular} De los estudiantes que prefieren chocolate, Aproximadamente, ¿qué porcentaje era de 12.∘ grado?
(1) 27.5
(3) 51.5
(2) 44.7
(4) 61.5
Consider the quadratic function y=1.7x2−9.1x+2.3
The graph of this function is a Select an answer Question Help: Message in: Select an answer straight line that slopes downward
Submit Part Jump to Ans parabola that opens downward straight line that slopes upward parabola that opens upward
onsider the quadratic function y=1.7x2−9.1x+2.3
The graph of this function is a parabola that opens upward ✓✓0s□
0 The vertex of this graph is its lowest ✓✓ point, so this function has a minimum 08 value.
□
Part 2 of 4
State the vertex (x,y) of this parabola. If necessary, round each value to three decimal places.
2.6760s - )−9.878
Part 4 of 4 Fill in the blanks to interpret the vertex. If necessary, round each value to three decimal places.
The minimum value of this function is □ , which occurs at an x value of □ .
Are the systems of equations equivalent? Explain.
2x+4y6x+3y=3=176x+12y6x+3y=9=17 The first equation in the second system □ in the first system, and the second equation in the second system
□ in the first system. Thus, the systems □ equivalent.
Find all excluded values for the expression.
That is, find all values of w for which the expression is undefined.
w+7w+6 If there is more than one value, separate them with commas.
w=□
Use the definition of a one-to-one function to determine if the function is one-to-one.
k(x)=∣x−1∣
The function is one-to-one.
The function is not one-to-one.
Using the substitution 3sin(u)=x, we obtain
∫x29−x2dx=∫Ksinmucosnudu
where the constants K=□□m= and n=□ . Using this result and your knowledge about indefinite integrals of powers of sinu and cosu, find the indefinite integral
∫x29−x2dx=□+C Note: Your answer should be in terms of x, not u.
Multiple Choice 1 point
Which of the following describes the following arrow notation? f(x)→∞
As x approaches infinity, x increases without bound.
As the output approaches infinity, the output increases without bound.
As x approaches negative infinity, x decreases without bound.
As the output approaches negative infinity, the output decreases without bound.
An electric current, I, in amps, is given by
I=cos(wt)+3sin(wt),
where w=0 is a constant. What are the maximum and minimum values of I ?
Minimum value of I : □ amp Maximum value of I : □ amp Note: You can earn partial credit on this problem.
Use the function below to answer the following questions.
n(x)=−ex+3
(a) Use transformations of the graph of y=ex to graph the given function.
(b) Write the domain and range in interval notation.
(c) Write an equation of the asymptote. Part: 0/3 Part 1 of 3
Use the function below to answer the following questions.
m(x)=5x+4
(a) Use transformations of the graph of y=5x to graph the given function.
(b) Write the domain and range in interval notation.
(c) Write an equation of the asymptote. Part: 0/3
\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ EXAMEN PARCIAL 3 } & \\
\hline Materia & Cálculo Diferencial & \\
\hline Semestre & 2 \\
\hline Carrera & Tecnología en Obras Civiles & \\
\hline
\end{tabular} 1. Resuelva las siguientes derivadas usando la Regla de la cadena
a. h(t)=2cos(1−2x)2
b. g(x)=x4+4x
c. y=−(x+3)35x 2. Resuelva las siguientes derivadas Implícitas
a. xy+1=xy+1
b. 5xy+2y=x2y+xy3
c. 3y3x2+4x2y3−x3y2=12x2+cos(xy)
d. 9x2=yx 3. Resuelva las siguientes derivadas usando una Razón de cambio adecuiada.
a. Un globo completamente esférico está siendo inflado a una razón de 3cm3/s.
Solve by completing the square.
−3v2+48v−75=0 言A Write your answers as integers, proper or improper fractions in simplest form, or cimals rounded to the nearest hundredth.
) [ix x˙A]=□ or v=□
Solve the system by using the addition method.
4x2+y26x2−4y2=37=50
There are infinitely many solutions.
The solution set is the empty set, }.
The solution set is a finite set.
The solution set is □ \}
6. (04.02 MC) A gym offers regular memberships for $80 per month and off-peak memberships for $60 per month. Last month, the gym sold a total of 420 memberships for a total of $31,100. The following system of equations models this scenario:
80x+60y=31,100x+y=420 How many of the memberships sold were regular memberships? (1 point)
125
140
235
295
Find the number of solutions by graphing the system of equations. Select "None" if applicable. (Hint: Rewrite the system of equations into familiar forms to graph.)
ln7=2lnx−lnyx2+y2−6y+8=0 Number of solutions: □
None
Quadratic and Exponential Functions
Graphing a parabola of the form y=ax2+bx+c : Integer coefficier
aph the parabola.
y=3x2−30x+69 Plot five points on the parabola: the vertex, two points to the le button.
4) Let f(x)=3x+2,g(x)=x2+2x+1, and h(x)=x−12x+1
a) Find and simplify (g∘f)(x),(f∘g)(x),(f∘f)(x).
b) Find f−1 and show that the function you found is indeed the inverse of f(x)
c) h(x),x=1 is one-to-one. Find its inverse and check the result.
12. Let a equal the measure of angle A. The equation 360∘=a+90∘+135∘+75∘ represents the sum of the angles in the quadrilateral. Find the missing angle measure by solving the equation.
hmic Functions
Question 11, 5.4.67 Solve the equation. Use the change of base formula when appropriate.
e−x=18 Select the correct choice below and, if necessary, fill in the answer box to complete your choice.
A. x=□ (Type an integer or decimal rounded to the nearest hundredth as needed.)
B. There is no solution.
Using Descartes' Rule of Signs, what can be said about the following polynomial: x3−4x2+7x−10 ?
Since there are two negatives and one positive, there will be only two negative roots.
Since there are an even amount of positive and negative signs, there is no solution.
Since there is only one variable ( x ), there will be fewer than three answers.
There are three sign changes, meaning this polynomial has up to three positive roots.
unctions
Question 13, 5.4.71 Solve the equation.
105x=10000 Select the correct choice below and, if necessary, fill in the answer box to complete your choice.
A. The solution is x=□ . (Type an integer or a fraction.)
B. There is no solution.
Part 3 of 3
Points: 0.67 of 1 For the function shown below, complete the following.
f(x)=x3−2x2−9x+18
a. List all possible zeros.
b. Use synthetic division to test the possible rational zeros and find an actual zero.
c. Use the quotient from part (b) to find the remaining zeros of the polynomial function.
a. List all possible rational zeros.
±1,±2,±3,±6,±9,±18
(Use a comma to separate answers as needed.)
b. Use synthetic division to test the possible rational zeros and find an actual zero. One of the actual rational zeros is 2 .
c. Use the quotient from part (b) to find the remaining zeros of the polynomial function. Then write all of the zeros of the function. The solution of f(x)=x3−2x2−9x+18 is □
(Type exact answers, using radicals as needed. Use a comma to separate answers as needed.)
example
Calculator
Given the following sets, find the set (A∪B)′∩C.
U={1,2,3,…,9}A={1,2,4,5}B={1,3,8}C={1,3,4,6,7} Select the correct choice below and, if necessary, fill in the answer box to complete your choice.
A. (A∪B)′∩C=□ \}
(Use a comma to separate answers as needed.)
B. (A∪B)′∩C is the empty set.
Product-to-Sum Formulas: 1. sin(u)cos(v)=21[sin(u+v))+sin(u−v)] 2. cos(u)sin(v)=21[sin(u+v))−sin(u−v)] 3. cos(u)cos(v)=21[cos(u+v))+cos(u−v)] 4. sin(u)sin(v)=21[cos(u−v))−cos(u+v)] Rewrite the expression below using one of the given formulas.
sin(3x)sin(5x)
Using formula number one:
sin(3x)sin(5x)=21[cos(3x−5x)−cos(3x+5x)]
Using formula four:
sin(3x)sin(5x)=21[cos(3x+5x)−cos(3x−5x)]
Using formula one:
sin(3x)sin(5x)=21[cos(3x+5x)−cos(3x−5x)]
Using formula number four:
sin(3x)sin(5x)=21[cos(3x−5x)−cos(3x+5x)]