Math Statement

Problem 13601

22. If f(x)=11+xf(x)=\frac{1}{1+x} and g(x)=12+xg(x)=\frac{1}{2+x}, determine f(g(x))f(g(x)).

See Solution

Problem 13602

3(41)5(6+3)=3(4-1)-5(6+3)=

See Solution

Problem 13603

3. Convert between radians and degrees. Express answers exactly if possible, otherwise to a whole number of degrees or 3 decimal places for radians. [4 marks] a. 180180^{\circ} b. 5 c. 1313^{\circ} d. π/7\pi / 7

See Solution

Problem 13604

True or False: 10 and 10z10 z are like terms. True False

See Solution

Problem 13605

y=2x12y=2 x-12 \begin{tabular}{|c|c|} \hlinexx & yy \\ \hline 0 & \\ \hline & -2 \\ \hline 3 & \\ \hline \end{tabular}

See Solution

Problem 13606

Simplify 3r+2p7r+53 r+2 p-7 r+5

See Solution

Problem 13607

Find the solution of the exponential equation e2x+1=24e^{2 x+1}=24 in terms of logarithms, or correct to four decimal places. x=x=

See Solution

Problem 13608

Suppose that f(x)=3x2+2x1f(x)=3 x^{2}+2 x-1 and g(x)={4x+4x<353x<9x+2x9g(x)=\left\{\begin{array}{lr} -4 x+4 & x<3 \\ 5 & 3 \leq x<9 \\ x+2 & x \geq 9 \end{array}\right.
Find the following: (a) (fg)(3)=(f \circ g)(3)= \square (b) (gf)(1)=(g \circ f)(-1)= \square

See Solution

Problem 13609

Let f(x)=4x+8f(x)=4 x+8 and g(x)=4x2g(x)=4-x^{2}. Evaluate the following:
1. f(g(0))=f(g(0))= \square
2. g(f(0))=g(f(0))= \square

Note: You can earn partial credit on this problem.

See Solution

Problem 13610

Consider the function f(x)=2x3+21x248x+11,8x2f(x)=2 x^{3}+21 x^{2}-48 x+11, \quad-8 \leq x \leq 2. Use the derivatives to algebraically answer the question:
This function has an absolutelminimum value equal to \square and an absolute maximum value equal to \square Question Help: Message instructor Submit Question Jump to Answer

See Solution

Problem 13611

Fully simplify 2k+52k+4y2 k+5-2 k+4 y

See Solution

Problem 13612

Simplify 4k+k+34 k+k+3

See Solution

Problem 13613

Find a number aa such that fg=gff \circ g=g \circ f, where f(x)=5x5f(x)=5 x-5 and g(x)=ax4g(x)=a x-4. a=a= Preview My Answers Submit Answers

See Solution

Problem 13614

Estimate the root(s) of the function f(x)=x2+x55f(x)=x^{2}+x-55 by integers. Seperate your answer(s) by commas. The roots are \approx \square Remark: When choosing a number to start Newton's method, it is important that you choose a number close to the root that you're trying to estimate (or else, Newton's method might end up giving you an estimate of the wrong root).

See Solution

Problem 13615

SD=0.81S D=\sqrt{0.81}

See Solution

Problem 13616

21. Tentukan peta dari kurva y=2x23x+5y=2 x^{2}-3 x+5 yang ditransformasikan dengan pencerminan terhadap garis y=xy=x dilanjutkan dengan rotasi terhadap titik pusat sebesar 9090^{\circ}, dan kemudian ditranslasikan oleh vektor [45]\left[\begin{array}{c}4 \\ -5\end{array}\right].

See Solution

Problem 13617

23. Let A=[61236]A=\left[\begin{array}{rr}-6 & 12 \\ -3 & 6\end{array}\right] and w=[21]w=\left[\begin{array}{l}2 \\ 1\end{array}\right]. Determine if ww is in Col Al Is in in Nol A?
24. Let A=[829648404]A=\left[\begin{array}{rrr}-8 & -2 & -9 \\ 6 & 4 & 8 \\ 4 & 0 & 4\end{array}\right] and w=[212]w=\left[\begin{array}{r}2 \\ 1 \\ -2\end{array}\right]. Determine if w is in ColA\mathrm{Col} A. Is w in Nul A?

In Exercises 15 and 16 , find AA ouch that the given set is ColA\operatorname{Col} A
15. {[2s+3tr+s2t4r+s3rst]:r,s,t\left\{\left[\begin{array}{c}2 s+3 t \\ r+s-2 t \\ 4 r+s \\ 3 r-s-t\end{array}\right]: r, s, t\right. real }\}
16. {[bc2b+c+d5c4dd]:b,c,d\left\{\left[\begin{array}{c}b-c \\ 2 b+c+d \\ 5 c-4 d \\ d\end{array}\right]: b, c, d\right. real }\}

See Solution

Problem 13618

Question Solve the following logarithm problem for the positive solution for xx. log36x=12\log _{36} x=\frac{1}{2}

See Solution

Problem 13619

013x4x21dx\int_{0}^{1} \frac{3 x}{4 x^{2}-1} d x

See Solution

Problem 13620

Solve the following logarithm problem for the positive solution for xx. log125x=43\log _{125} x=\frac{4}{3}

See Solution

Problem 13621

Write the exponential equation as a logarithmic equation. 42=1164^{-2}=\frac{1}{16}

See Solution

Problem 13622

Write the logarithmic equation as an exponential equation. log5(1125)=32\log _{5}\left(\frac{1}{\sqrt{125}}\right)=-\frac{3}{2}

See Solution

Problem 13623

Question Write the logarithmic equation as an exponential equation. log2(32)=52\log _{2}(\sqrt{32})=\frac{5}{2}

See Solution

Problem 13624

Find the derivative of the function y=2xx23+4arccosx y = 2^x - \sqrt[3]{x^2} + 4 \arccos x .

See Solution

Problem 13625

2) semplifica l'espressione cos(πα)sin(3π2+α)sin2αtan(απ)+tan(π2+α)\frac{\cos (\pi-\alpha) \sin \left(\frac{3 \pi}{2}+\alpha\right)}{\sin ^{2} \alpha} \tan (\alpha-\pi)+\tan \left(\frac{\pi}{2}+\alpha\right)

See Solution

Problem 13626

Determine μx\mu_{\mathrm{x}}^{-}and σx\sigma_{\mathrm{x}}^{-}from the given parameters of the population and sample size. μ=53,σ=6,n=35\mu=53, \sigma=6, n=35 μxˉ=53σxˉ=\begin{array}{l} \mu_{\bar{x}}=53 \\ \sigma_{\bar{x}}=\square \end{array} (Round to three decimal places as needed.)

See Solution

Problem 13627

LESSON 5.3 Worksheet A: (Topic 2.3 ) Directions: Convert the following equation
4. y=ex1y=e^{x-1}
1. 23=82^{3}=8
2. 103=100010^{3}=1000

Directions: Convert the following equations from logarithmic (log) form to exponential form.
5. log41=0\log _{4} 1=0
6. log1100=2\log \frac{1}{100}=-2
7. log16y=12\log _{16} y=\frac{1}{2}
8. lnx=4\ln x=4

Directions: Evaluate the following expressions without a calculator.
9. log39=2\log _{3} 9=2
10. log636=2\log _{6} \sqrt{36}=2
11. ln1\ln 1
12. log10\log 10
13. log4116\log _{4} \frac{1}{16}
14. log28\log _{2} 8
15. lne7\ln e^{7}
16. ln1e5\ln \frac{1}{e^{5}}
17. log255\log _{25} 5
18. log162\log _{16} 2
19. log66\log _{6} \sqrt{6}
20. log913\log _{9} \frac{1}{3}

See Solution

Problem 13628

116x2dx\int \frac{1}{16-x^{2}} d x

See Solution

Problem 13629

912427=n39 \sqrt{12}-4 \sqrt{27}=n \sqrt{3}

See Solution

Problem 13630

7. Given that y=x3(12x)y=\frac{x^{3}}{(1-2 x)}, then 1y dy dx=\frac{1}{y} \frac{\mathrm{~d} y}{\mathrm{~d} x}= (Hint: take logarithms of both sides and then (a) 3x112x\frac{3}{x}-\frac{1}{1-2 x} (b) 3x+212x\frac{3}{x}+\frac{2}{1-2 x} (c) 3x212x\frac{3}{x}-\frac{2}{1-2 x} (d) 3x+112x\frac{3}{x}+\frac{1}{1-2 x}

See Solution

Problem 13631

2. Expand and simplify the following a) 2(3+x)+4x2(3+x)+4 x b) (x3)(x+2)(x-3)(x+2) c) (4x3)2(4 x-3)^{2}

See Solution

Problem 13632

Jika tanx=2\tan x=2 maka nilai sinx+cosxsinxcosx=\frac{\sin x+\cos x}{\sin x-\cos x}= A 1. 3 2. 3. 4. 5.

See Solution

Problem 13633

x(x+1)56=4x(x7)x(x+1)-56=4 x(x-7)
What is the sum of the solutions to the given equation?

See Solution

Problem 13634

13 Mark for Review
The function f(x)=19(x7)2+3f(x)=\frac{1}{9}(x-7)^{2}+3 gives a metal ball's height above the ground f(x)f(x), in inches, xx seconds after it started moving on a track, where 0x100 \leq x \leq 10. Which of the following is the best interpretation of the vertex of the graph of y=f(x)y=f(x) in the xyx y-plane? (A) The metal ball's minimum height was 3\mathbf{3} inches above the ground. (B) The metal ball's minimum height was 7 inches above the ground. (C) The metal ball's height was 3 inches above the ground when it started moving. (D) The metal ball's height was 7 inches above the ground when it started moving.

See Solution

Problem 13635

tomework 7.1.39 HW Score: 30%,330 \%, 3 of 10 points Points: 0 of 1
Solve the system. State whether the system is inconsistent or has infinitely many solutions. If the system has infinitely many solutions, write the solution set with yy arbitrary. 2x6y=07x+21y=17\begin{aligned} 2 x-6 y & =0 \\ -7 x+21 y & =17 \end{aligned}
Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. There is one solution. The solution set is \square \}. (Simplify your answer. Type an ordered pair.) B. The system has infinitely many solutions. The solution set is \square \}. (Simplify your answer. Type an ordered pair. Type an expression using yy as the variable.) C. The solution is the empty set, \varnothing.

See Solution

Problem 13636

14 Mark for Review 420 F(x)=95(x273.15)+32F(x)=\frac{9}{5}(x-273.15)+32
The function FF gives the temperature, in degrees Fahrenheit, that corresponds to a temperature of xx kelvins. If a temperature increased by 2.10 kelvins, by how much did the temperature increase, in degrees Fahrenheit? (A) 3.78 (B) 35.78 (C) 487.89 (D) 519.89

See Solution

Problem 13637

7.1 Homework 7.1.71 HW
Solve the following nonlinear system of equations analytically. 3x2+2y2=14xy=3\begin{aligned} 3 x^{2}+2 y^{2} & =14 \\ x-y & =-3 \end{aligned}
Select the correct choice below and, if necessary, fill in the answer box to complete your choice. (Simplify your answer.) A. The solution set is \square \}. (Type an ordered pair. Use a comma to separate answers as needed.) B. There are infinitely many solutions. The solution set is {\{ \square ,y) }\}, where yy is any real number. C. The solution set is \varnothing.

See Solution

Problem 13638

7.1 Homework 7.1.71 Sco Poin
Solve the following nonlinear system of equations analytically. 3x2+2y2=14xy=3\begin{aligned} 3 x^{2}+2 y^{2} & =14 \\ x-y & =-3 \end{aligned}
Select the correct choice below and, if necessary, fill in the answer box to complete your choice. (Simplify your answer.) A. The solution set is \square B. (Type an ordered pair. Use a comma to separate answers as needed.) B. There are infinitely many solutions. The solution set is {(,y)}\{(\square, y)\}, where yy is any real number. C. The solution set is \varnothing.

See Solution

Problem 13639

Exercies find the second derivative of y=f(x)y=f(x) at x=0x=0 where yy is determined by y5+2yx3x7=0y^{5}+2 y-x-3 x^{7}=0

See Solution

Problem 13640

Укажіть похідну функції f(x)=ctgx+2x5f(x)=-\operatorname{ctg} x+2 x^{5}

See Solution

Problem 13641

11. 32÷(234)32 \div\left(2^{3}-4\right)

See Solution

Problem 13642

Давайте теперь подробно решим задачу с использованием формулы Пуассона для волнового уравнения. Мы будем решать задачу Коши для уравнения: utt=a2(uxx+uyy)u_{t t}=a^{2}\left(u_{x x}+u_{y y}\right)
с начальными условиями: u(x,y,0)=0,ut(x,y,0)=(2x+3y)2u(x, y, 0)=0, \quad u_{t}(x, y, 0)=(2 x+3 y)^{2}

See Solution

Problem 13643

4.3+(8.45.1)4.3+(8.4-5.1)

See Solution

Problem 13644

1.25×4+3×2÷(12)31.25 \times 4+3 \times 2 \div\left(\frac{1}{2}\right)^{3}

See Solution

Problem 13645

Properties of Logarithms - Example 4 Write each of the following as a single logarithm. (a) 3ln2+ln(x2)=ln23+ln(x2)=ln(8x2)3 \ln 2+\ln \left(x^{2}\right)=\ln 2^{3}+\ln \left(x^{2}\right)=\ln \left(8 x^{2}\right)

See Solution

Problem 13646

x2x2+x+1dx\int \frac{x}{2 x^{2}+x+1} d x

See Solution

Problem 13647

Use the special properties of logarithms to evaluate the expression log21121\log _{21} \frac{1}{21}. log21121=\log _{21} \frac{1}{21}= \square (Type an integer or a simplified fraction.)

See Solution

Problem 13648

Use a calculator to find the natural logarithm, base ee. ln67.47ln67.47=\begin{array}{l} \ln 67.47 \\ \ln 67.47= \end{array} \square (Round to four decimal places as needed.)

See Solution

Problem 13649

Данная задача представляет собой задачу Коши для волнового уравнения в трёхмерном пространстве. Уравнение: utt=9(uxx+uyy+uzz)u_{t t}=9\left(u_{x x}+u_{y y}+u_{z z}\right)
где u(t,x,y,z)u(t, x, y, z) - функция, зависящая от времени tt и пространственных координат x,y,zx, y, z. Также даны начальные условия:
1. u(t=0,x,y,z)=0u(t=0, x, y, z)=0,
2. ut(t=0,x,y,z)=(2x+3y+4z)2\quad u_{t}(t=0, x, y, z)=(2 x+3 y+4 z)^{2}.

See Solution

Problem 13650

Submit Question
Question 2 0/10 / 1 pt 5 99 Details
ANOVA is a statistical procedure that compares two or more treatment conditions for differences in variance. True False
Question Help: Written Example Post to forum Submit Question

See Solution

Problem 13651

5 Consider the functions PP and QQ, defined as shown. P(x)=x2+7x14Q(x)=3x+10\begin{array}{l} P(x)=x^{2}+7 x-14 \\ Q(x)=-3 x+10 \end{array}
In the xyx y-coordinate plane, what are the coordinates of the points at which the graphs of the equations y=P(x)y=P(x) and y=Q(x)y=Q(x) intersect? Explain how you determined your answer. Enter your answer and your explanation in the space provided.

See Solution

Problem 13652

Solve the inequality. x4x+3x[?]\begin{array}{l} \frac{x}{4} \leq x+3 \\ x \geq[?] \end{array}

See Solution

Problem 13653

Find the relative maximums of the function f(x)=(2x1)(x+4)(x2) f(x) = (2x-1)(x+4)(x-2) .

See Solution

Problem 13654

15 points)Solve the system analytically. 3) 4x+5y+z=315x2yz=52x+y+5z=29\begin{array}{l} 4 x+5 y+z=-31 \\ 5 x-2 y-z=-5 \\ 2 x+y+5 z=-29 \end{array}

See Solution

Problem 13655

Given the following information: 2 A( g)+B( g)A2 B( g)Kp12 A( g)+C2( g)2AC( g)Kp23/2 A2( g)+B( g)+C( g)AC( g)+A2 B( g)Kp3\begin{array}{l} 2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}(\mathrm{~g}) \leftrightharpoons \mathrm{A}_{2} \mathrm{~B}(\mathrm{~g}) \mathrm{K}_{\mathrm{p} 1} \\ 2 \mathrm{~A}(\mathrm{~g})+\mathrm{C}_{2}(\mathrm{~g}) \leftrightharpoons 2 \mathrm{AC}(\mathrm{~g}) \mathrm{K}_{\mathrm{p} 2} \\ 3 / 2 \mathrm{~A}_{2}(\mathrm{~g})+\mathrm{B}(\mathrm{~g})+\mathrm{C}(\mathrm{~g}) \leftrightharpoons \mathrm{AC}(\mathrm{~g})+\mathrm{A} \\ { }_{2} \mathrm{~B}(\mathrm{~g}) \mathrm{K}_{\mathrm{p} 3} \end{array}
Which relationship represents the equilibrium constant for the reaction: 3 A2( g)+3 B( g)+2C(g)3 A2 B( g)+3 \mathrm{~A}_{2}(\mathrm{~g})+3 \mathrm{~B}(\mathrm{~g})+2 \mathrm{C}(\mathrm{g}) \leftrightharpoons 3 \mathrm{~A}_{2} \mathrm{~B}(\mathrm{~g})+ C2( g)Knet =\mathrm{C}_{2}(\mathrm{~g}) \mathrm{K}_{\text {net }}= ? Knet=Kp1×Kp2×Kp3K_{n e t}=K_{p 1} \times K_{p 2} \times K_{p 3} Knet =Kp1Kp2+2Kp3K_{\text {net }}=K_{p 1}-K_{p 2}+2 K_{p 3} Knet=Kp1×Kp32/Kp2K_{n e t}=K_{p 1} \times K_{p 3}{ }^{2} / K_{p 2} Knet =Kp1×2Kp3/Kp2K_{\text {net }}=K_{p 1} \times 2 K_{p 3} / K_{p 2} Knet =Kp1×Kp2×Kp32K_{\text {net }}=K_{p 1} \times K_{p 2} \times K_{p 3}{ }^{2}

See Solution

Problem 13656

Oblicz: (4x2)2xdx\int\left(4-x^{2}\right) \sqrt{2-x} d x

See Solution

Problem 13657

ZADANIE 2 Wyznacz punkty przegięcia funkcji: f(x)=xx2+1f(x)=\frac{x}{x^{2}+1} (x)=xx2+1\int(x)=\frac{x}{x^{2}+1}

See Solution

Problem 13658

Question Watch Video Show Exampres
If f(x)f(x) is an exponential function of the form of y=abxy=a b^{x} where f(2)=9f(2)=9 and f(3.5)=41f(3.5)=41, then find the value of f(6)f(6), to the nearest hundredth.
Answer Attempt 1 out of 2 Submit Answer

See Solution

Problem 13659

Question Watch Video Show Examples
If f(x)f(x) is an exponential function of the form of y=abxy=a b^{x} where f(2)=10f(-2)=10 and f(1)=41f(1)=41, then find the value of f(1)f(-1), to the nearest hundredth.
Answer Attempt 1 out of 2 Virtual keyboard 今国 \square Submit Answer

See Solution

Problem 13660

 17. x+y=64y4x=12\begin{array}{l}\text { 17. } x+y=6 \\ 4 y-4 x=12\end{array}

See Solution

Problem 13661

2y5=y+42 y-5=y+4

See Solution

Problem 13662

Given the line y=3x1y=3 x-1
What is the slope of a line parallel to this line? m=\mathrm{m}= \square
What is the equation of the line parallel to the given line that passes through the point (1,3)(-1,3) ? y=y^{\prime \prime}= \square

See Solution

Problem 13663

Let XX be a random variable with a CDF equal to F(x)=c(11.5xex)1[1.8;)(x)F(x)=c \cdot\left(\frac{1}{1.5}-x e^{-x}\right) \cdot \mathbb{1}_{[1.8 ; \infty)}(x), where cc is a constant. Find cc :
Answer: 3.361 \square
The correct answer is: 1.500
For the random variable defined aboveP (X[3.96;))(X \in[3.96 ; \infty)) amounts to
Answer: \square 1

See Solution

Problem 13664

Rewrite in simplest rational exponent form xx4\sqrt{x} \cdot \sqrt[4]{x}. Show each step of your process.

See Solution

Problem 13665

(5) 3x6=93 x-6=-9

See Solution

Problem 13666

2. [-/3 Points] DETAILS MY NOTES SCALCET9 11.10.062.
Evaluate the indefinite integral as an infinite series. arctan(x6)dxn=0()+c\begin{array}{r} \int \arctan \left(x^{6}\right) d x \\ \sum_{n=0}^{\infty}(\square)+c \end{array} Need Help? Readif Submit Answer

See Solution

Problem 13667

A graphing calculator will be available for this question. If log2bx5=Tand b>12\log _{2 b} x^{5}=T_{\text {and }} b>\frac{1}{2}, then x=x= (2b)5T(2 b)^{5 T} 2b5T2 b^{5 T} (2b)T5\frac{(2 b)^{T}}{5} (2b)T5(2 b)^{\frac{T}{5}} 2bT52 b^{\frac{T}{5}}

See Solution

Problem 13668

If (x5)(x+5)=5(x-\sqrt{5})(x+\sqrt{5})=5, what is the value of xx ? ±5\pm 5 5±55 \pm \sqrt{5} ±10\pm \sqrt{10} 5±5-5 \pm \sqrt{5} ±30\pm \sqrt{30}

See Solution

Problem 13669

Rewrite in simplest radical form x56x16\frac{x^{\frac{5}{6}}}{x^{\frac{1}{6}}}.Show each step of your process.

See Solution

Problem 13670

Find the solutions of x24x+1=0x^{2}-4 x+1=0 to the nearest thousandth. x=0.812,3.445x=0.812,3.445 x=1.294,4.818x=1.294,4.818 x=4.022,0.938x=-4.022,0.938 x=0.238,1.901x=-0.238,1.901 x=0.268,3.732x=0.268,3.732

See Solution

Problem 13671

Find the equation of the axis of symmetry for the parabola y=x2+2x+7y=-x^{2}+2 x+7
Simplify any numbers and write them as proper fractions, improper fractions, or integers. \square
Save answer

See Solution

Problem 13672

Express z=22iz=\sqrt{2}-\sqrt{2} i in polar form.
This gives r=r= and θ=\theta= \square π\pi, where θ[0,2π).\theta \in[0,2 \pi) .

See Solution

Problem 13673

Simplify the expression. (x115)5\left(x^{\frac{1}{15}}\right)^{5}

See Solution

Problem 13674

Solve the equation for x x+47=1\sqrt{x+4}-7=1

See Solution

Problem 13675

Rewrite the expression with rational exponents as a radical expression. 4x374 x^{\frac{3}{7}}

See Solution

Problem 13676

sin(7π2+α)+cos(6πα)+tan(7π2+α)cos(3π2α)+sin2(π2+α)+sin2(α)\sin \left(\frac{7 \pi}{2}+\alpha\right)+\cos (6 \pi-\alpha)+\tan \left(\frac{7 \pi}{2}+\alpha\right) \cos \left(\frac{3 \pi}{2}-\alpha\right)+\sin ^{2}\left(\frac{\pi}{2}+\alpha\right)+\sin ^{2}(-\alpha)

See Solution

Problem 13677

3) Given the equation: 4x+17=x1\sqrt{4 x+17}=x-1 a) What type of equation is this? (1) Linear (3) Cubic (2) Quadratic (4) Square Root

See Solution

Problem 13678

1. Solve this DE using Exact Techrique dydx=yy22xy+1,y>1\frac{d y}{d x}=\frac{y-y^{2}}{2 x y+1}, \quad y>1

See Solution

Problem 13679

f. 15x=125\quad 15^{x}=125

See Solution

Problem 13680

Evaluate f(x)f^{\prime}(x) at x=1x=1.  Evaluate f(x) at x=1.f(1)=\begin{array}{l} \text { Evaluate } f^{\prime}(x) \text { at } x=1 . \\ f^{\prime}(1)=\square \end{array}

See Solution

Problem 13681

Given the function f(x)=32(x+5)+0f(x)=-3 \sqrt{2(x+5)}+0 find the following: The vertex of the function is \square The domain of the function is \square How many xx intercepts does the function have? \square The range of the function is \square How many yy intercepts does the function have? \square

See Solution

Problem 13682

Use the imaginary number ii to rewrite the expression below as a complex number. Simplify all radicals. 77\sqrt{-77} \square i \square Submit

See Solution

Problem 13683

Use the imaginary number ii to rewrite the expression below as a complex number. Simplify all radicals. 18+5-18+\sqrt{-5} \square i \sqrt{ } Submit

See Solution

Problem 13684

Use the imaginary number ii to rewrite the expression below as a complex number. Simplify all radicals. 4\sqrt{-4} \square i Submit

See Solution

Problem 13685

b) n=1(1)n3n\sum_{n=1}^{\infty} \frac{(-1)^{n}}{3^{n}}

See Solution

Problem 13687

K. 1 Introduction to complex numbers 5 V
Use the imaginary number ii to rewrite the expression below as a complex number. Simplify all radicals. 164916-\sqrt{-49}

See Solution

Problem 13688

Two functions are shown below. f(x)=2x3+2x3g(x)=0.5x4\begin{array}{l} f(x)=2 x^{3}+2 x-3 \\ g(x)=-0.5|x-4| \end{array}
What is the yy-value when f(x)=g(x)f(x)=g(x) ?

See Solution

Problem 13689

d) (3ab2)5(9a2b6)2\frac{\left(-3 a b^{-2}\right)^{5}}{\left(-9 a^{2} b^{-6}\right)^{2}}

See Solution

Problem 13690

Use the imaginary number ii to rewrite the expression below as a complex number. Simplify all radicals. 29\sqrt{-29} \square i \square Submit

See Solution

Problem 13691

Part 2: Name:
8. (6 points each) Solve the following equations analytically. Show every step and simplify your answers. Be sure to give exact answers. (a) 50001+2e3t=4000\frac{5000}{1+2 e^{-3 t}}=4000 (b) 73+7x=345x7^{3+7 x}=3^{4-5 x}

See Solution

Problem 13692

A function is shown below. h(x)={12x15 for x4203x2 for x>4h(x)=\left\{\begin{array}{ll} -\frac{1}{2} x-15 & \text { for } x \leq-4 \\ 20-3 x^{2} & \text { for } x>-4 \end{array}\right.
What is the value of h(4)+3h(2)h(-4)+3 h(-2) ?

See Solution

Problem 13693

Solve the equation y=3y+216y2+24y+854y+4=44y+2##y=\frac{\frac{3 y+2}{16 y^{2}+24 y+8}-\frac{5}{4 y+4}=\frac{4}{4 y+2}}{\# \#}

See Solution

Problem 13694

Question 2
Factor completely. 4x27x+34 x^{2}-7 x+3 (x1)(4x3)(x-1)(4 x-3) (x3)(4x+1)(x-3)(4 x+1) (2x1)(2x3)(2 x-1)(2 x-3) (2x1)(2x+3)(2 x-1)(2 x+3)

See Solution

Problem 13695

400. If x+1/x=13x+1 / x=\sqrt{13}, then 3x/(x21)3 x /\left(x^{2}-1\right) equal to (a) 3133 \sqrt{13} (c) 1 (b) 1313\frac{\sqrt{13}}{13} (d) 3 (SSC MTS 2018)

See Solution

Problem 13696

Factor by grouping. x2+6x9x54x^{2}+6 x-9 x-54 (x+6)(x3)(x+6)(x-3) (x6)(x9)(x-6)(x-9) 2(3x27)2(3 x-27) (x+6)(x9)(x+6)(x-9)

See Solution

Problem 13697

Stelle die Formel f0=60mdf_{0}=\frac{60}{\sqrt{m^{\prime} \cdot d}} nach dd um.

See Solution

Problem 13698

Factor completely. 64x21664 x^{2}-16 8(8x22)8\left(8 x^{2}-2\right) 16(2x+1)(2x1)16(2 x+1)(2 x-1) 4(4x+2)(4x2)4(4 x+2)(4 x-2) 8(8x+2)(8x2)8(8 x+2)(8 x-2)

See Solution

Problem 13699

[-/1 Points] DETAILS MY NOTES SPRECALC8 7.4.032.
Find all solutions of the given equation. (Enter your answers as a comma-separated list. Let kk be any integer. Do not round coefficients 3cot(θ)+1=0θ=\begin{array}{l} \sqrt{3} \cot (\theta)+1=0 \\ \theta=\square \end{array} \square Submit Ahswer

See Solution

Problem 13700

esin(x)×cos(x)dx\int e^{\sin (x)} \times \cos (x) d x

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord