Get Started for Free
Overview
Archive
Sign In
Math
Arithmetic
Fractions and Decimals
Measurement
Geometry
Word Problems
Algebra
Calculus
Statistics
Probability
Number Theory
Discrete Mathematics
Linear Algebra
Differential Equations
Trigonometry
Finance
Data
Graph
Diagram & Picture
Math Statement
Expression
Equation
Inequality
System
Matrix
Vector
Set
Function
Sequence
Series
Vector Space
Distribution
Solve
Simplify
Model
Prove
Analyze
Numbers & Operations
Data & Statistics
Discrete
Natural Numbers
Fractions
Decimals
Integers
Rationals
Percentages
Ratios & Proportions
Order of Operations
Linearity
Absolute Value
Quadratics
Rational
Exponents & Radicals
Polynomials
Exponentials
Logarithms
Matrices
Complex Numbers
Angles
Triangles
Circles
Congruence & Similarity
Pythagorean Theorem
Mensuration
Transformations
Coordinates
Data Collection & Representation
Measures of Central Tendency
Measures of Spread
Statistical Inference
Right Triangle
Non-Right Triangle
Unit Circle & Radians
Identities & Equations
Applications
Limits & Continuity
Derivatives
Integrals
Combinatorics
Word Problem
Sequences & Series
Archive
/
Math
Math Statement
Problem 14001
Calculate
0.5000
/
3.4
0.5000 / 3.4
0.5000/3.4
and provide the answer with the correct significant figures.
See Solution
Problem 14002
Find the limit as
t
t
t
approaches 0 from the right of
log
(
t
)
\log(t)
lo
g
(
t
)
.
See Solution
Problem 14003
Calculate
4
+
[
2
−
(
8
+
9
)
]
4+[2-(8+9)]
4
+
[
2
−
(
8
+
9
)]
using the order of operations. Choose A or B for your answer.
See Solution
Problem 14004
Find the limit:
lim
t
→
0
−
ln
(
−
t
)
\lim _{t \rightarrow 0^{-}} \ln (-t)
lim
t
→
0
−
ln
(
−
t
)
See Solution
Problem 14005
Calculate the limit:
lim
t
→
5
+
ln
(
t
−
5
)
\lim _{t \rightarrow 5^{+}} \ln (t-5)
lim
t
→
5
+
ln
(
t
−
5
)
.
See Solution
Problem 14006
Find how many standard deviations above the mean a person with a
1
Q
1 \mathrm{Q}
1
Q
of 130 scores.
See Solution
Problem 14007
Find the largest
δ
\delta
δ
for
ε
=
0.2
\varepsilon=0.2
ε
=
0.2
and
ε
=
0.1
\varepsilon=0.1
ε
=
0.1
in the limit
lim
x
→
2
(
x
3
−
5
x
+
5
)
=
3
\lim _{x \rightarrow 2}(x^{3}-5 x+5)=3
lim
x
→
2
(
x
3
−
5
x
+
5
)
=
3
. Round to four decimal places.
See Solution
Problem 14008
Calculate the sum of 32 and 28. What is
32
+
28
32 + 28
32
+
28
?
See Solution
Problem 14009
Simplify the expression:
11
y
+
−
2
y
−
8
y
−
5
11 y+\frac{-2 y-8 y}{-5}
11
y
+
−
5
−
2
y
−
8
y
See Solution
Problem 14010
Evaluate the expression
11
y
+
−
2
y
−
8
y
−
5
11y + \frac{-2y - 8y}{-5}
11
y
+
−
5
−
2
y
−
8
y
at
y
=
−
5
y = -5
y
=
−
5
and simplify.
See Solution
Problem 14011
Simplify the expression:
−
3
x
−
x
2
+
9
x
\frac{-3 x - x}{2} + 9 x
2
−
3
x
−
x
+
9
x
See Solution
Problem 14012
Evaluate the expression
−
2
x
−
y
−
5
-2x - y - 5
−
2
x
−
y
−
5
for
x
=
−
2
x = -2
x
=
−
2
and
y
=
−
3
y = -3
y
=
−
3
, then simplify the result.
See Solution
Problem 14013
Simplify the expression:
−
2
(
4
x
+
3
)
+
(
3
y
+
3
)
-2(4 x+3)+(3 y+3)
−
2
(
4
x
+
3
)
+
(
3
y
+
3
)
.
See Solution
Problem 14014
Evaluate the expression
6
x
2
+
6
y
2
−
5
6 x^{2}+6 y^{2}-5
6
x
2
+
6
y
2
−
5
at
x
=
3
,
y
=
−
4
x=3, y=-4
x
=
3
,
y
=
−
4
and simplify.
See Solution
Problem 14015
Solve the system of equations:
y
2
=
25
y^{2}=25
y
2
=
25
and
c
+
3
y
=
10
c+3y=10
c
+
3
y
=
10
.
See Solution
Problem 14016
Solve the system of equations:
x
2
+
y
2
=
25
x^{2}+y^{2}=25
x
2
+
y
2
=
25
and
2
x
+
3
y
=
10
2x+3y=10
2
x
+
3
y
=
10
.
See Solution
Problem 14017
Simplify the expression:
3
(
x
2
+
4
x
+
3
)
+
5
(
x
2
+
3
x
+
2
)
3\left(x^{2}+4 x+3\right)+5\left(x^{2}+3 x+2\right)
3
(
x
2
+
4
x
+
3
)
+
5
(
x
2
+
3
x
+
2
)
.
See Solution
Problem 14018
Determine if these equations express
y
y
y
as a function of
x
x
x
:
x
2
+
y
2
=
25
x^{2}+y^{2}=25
x
2
+
y
2
=
25
,
2
x
+
3
y
=
10
2 x+3 y=10
2
x
+
3
y
=
10
,
x
=
y
2
−
25
x=y^{2}-25
x
=
y
2
−
25
.
See Solution
Problem 14019
Evaluate the expression
−
6
x
2
−
5
y
2
+
5
-6 x^{2}-5 y^{2}+5
−
6
x
2
−
5
y
2
+
5
for
x
=
−
2
x=-2
x
=
−
2
and
y
=
−
7
y=-7
y
=
−
7
, then simplify.
See Solution
Problem 14020
Determine if the following relationships express
y
y
y
as a function of
x
x
x
:
1.
x
2
+
y
2
=
25
x^{2}+y^{2}=25
x
2
+
y
2
=
25
2.
2
x
+
3
y
=
10
2 x+3 y=10
2
x
+
3
y
=
10
3.
x
=
y
2
−
25
x=y^{2}-25
x
=
y
2
−
25
See Solution
Problem 14021
Find the sum of 98 and 33:
98
+
33
98 + 33
98
+
33
.
See Solution
Problem 14022
Find
δ
\delta
δ
for
ε
=
0.1
\varepsilon=0.1
ε
=
0.1
in the limit:
lim
x
→
6
−
3
x
−
4
=
−
22
\lim _{x \rightarrow 6}-3 x-4=-22
lim
x
→
6
−
3
x
−
4
=
−
22
.
See Solution
Problem 14023
Simplify the polynomial
−
3
x
−
2
x
2
+
5
+
3
x
2
-3x - 2x^2 + 5 + 3x^2
−
3
x
−
2
x
2
+
5
+
3
x
2
.
See Solution
Problem 14024
Prove that
lim
x
→
8
(
1
7
x
+
6
)
=
50
7
\lim _{x \rightarrow 8}\left(\frac{1}{7} x+6\right)=\frac{50}{7}
lim
x
→
8
(
7
1
x
+
6
)
=
7
50
by finding
δ
\delta
δ
in terms of
ε
\varepsilon
ε
.
See Solution
Problem 14025
Find
δ
\delta
δ
for
f
(
x
)
=
x
2
3
f(x)=x^{\frac{2}{3}}
f
(
x
)
=
x
3
2
as
x
→
1
x \to 1
x
→
1
with
ε
=
0.001
\varepsilon=0.001
ε
=
0.001
such that
∣
f
(
x
)
−
L
∣
<
ε
|f(x)-L|<\varepsilon
∣
f
(
x
)
−
L
∣
<
ε
.
See Solution
Problem 14026
Simplify the expression by combining like terms:
−
3
x
+
6
x
2
−
9
−
x
2
-3x + 6x^2 - 9 - x^2
−
3
x
+
6
x
2
−
9
−
x
2
.
See Solution
Problem 14027
Evaluate
(
x
+
y
)
2
−
5
z
(x+y)^{2}-5z
(
x
+
y
)
2
−
5
z
at
x
=
−
2
,
y
=
2
,
z
=
4
x=-2, y=2, z=4
x
=
−
2
,
y
=
2
,
z
=
4
and simplify.
See Solution
Problem 14028
Prove that
lim
x
→
6
(
1
7
x
−
9
)
=
−
57
7
\lim _{x \rightarrow 6}\left(\frac{1}{7} x-9\right)=-\frac{57}{7}
lim
x
→
6
(
7
1
x
−
9
)
=
−
7
57
by finding
δ
\delta
δ
for any
ε
>
0
\varepsilon>0
ε
>
0
.
See Solution
Problem 14029
Evaluate
6
y
+
−
11
y
−
10
y
7
6y + \frac{-11y - 10y}{7}
6
y
+
7
−
11
y
−
10
y
at
y
=
4
y=4
y
=
4
and simplify.
See Solution
Problem 14030
Simplify the expression by combining like terms:
−
2
x
+
3
y
2
−
5
−
2
y
2
+
3
x
+
3
-2x + 3y^2 - 5 - 2y^2 + 3x + 3
−
2
x
+
3
y
2
−
5
−
2
y
2
+
3
x
+
3
.
See Solution
Problem 14031
Evaluate the expression
−
0.9
x
2
+
4.3
x
2
+
3
x
+
4.7
x
2
-0.9 x^{2}+4.3 x^{2}+3 x+4.7 x^{2}
−
0.9
x
2
+
4.3
x
2
+
3
x
+
4.7
x
2
at
x
=
2
x=2
x
=
2
and simplify.
See Solution
Problem 14032
Find the corner points for the inequalities:
x
+
y
≥
1
x + y \geq 1
x
+
y
≥
1
,
x
≤
2
x \leq 2
x
≤
2
,
y
≤
4
y \leq 4
y
≤
4
,
x
≥
0
x \geq 0
x
≥
0
,
y
≥
0
y \geq 0
y
≥
0
.
See Solution
Problem 14033
Solve for
x
\mathrm{x}
x
and
y
\mathrm{y}
y
using substitution or elimination from these equations:
5
x
+
1
=
y
+
5
5x + 1 = y + 5
5
x
+
1
=
y
+
5
and
10
x
+
8
=
1
−
3
y
10x + 8 = 1 - 3y
10
x
+
8
=
1
−
3
y
.
See Solution
Problem 14034
Solve the proportion
x
8
=
3
4
\frac{x}{8}=\frac{3}{4}
8
x
=
4
3
using cross multiplication. What is
x
x
x
? a.
4
4
4
b.
6
6
6
c.
24
24
24
d.
32
32
32
See Solution
Problem 14035
Minimize
c
=
x
+
2
y
c=x+2y
c
=
x
+
2
y
given the constraints:
x
+
4
y
≥
23
x+4y \geq 23
x
+
4
y
≥
23
,
6
x
+
y
≥
23
6x+y \geq 23
6
x
+
y
≥
23
,
x
≥
0
x \geq 0
x
≥
0
,
y
≥
0
y \geq 0
y
≥
0
.
See Solution
Problem 14036
Minimize
c
=
x
+
2
y
c=x+2y
c
=
x
+
2
y
with constraints:
x
+
4
y
≥
23
x+4y \geq 23
x
+
4
y
≥
23
,
6
x
+
y
≥
23
6x+y \geq 23
6
x
+
y
≥
23
,
x
≥
0
x \geq 0
x
≥
0
,
y
≥
0
y \geq 0
y
≥
0
.
See Solution
Problem 14037
Solve the system of equations:
3
x
+
5
y
=
1
3x + 5y = 1
3
x
+
5
y
=
1
and
−
x
−
5
3
y
=
−
1
3
-x - \frac{5}{3}y = -\frac{1}{3}
−
x
−
3
5
y
=
−
3
1
.
See Solution
Problem 14038
Solve the proportion by cross multiplying:
21
−
x
x
=
2
1
\frac{21-x}{x}=\frac{2}{1}
x
21
−
x
=
1
2
. Choose
x
x
x
: a. 21 b. 14 c. 7 d. 1
See Solution
Problem 14039
Calculate the average rate of change of
f
(
x
)
=
−
2
x
+
17
f(x) = -2x + 17
f
(
x
)
=
−
2
x
+
17
from
x
1
=
0
x_1 = 0
x
1
=
0
to
x
2
=
3
x_2 = 3
x
2
=
3
.
See Solution
Problem 14040
Calculate the average rate of change of
f
(
x
)
=
x
2
−
2
x
+
8
f(x) = x^2 - 2x + 8
f
(
x
)
=
x
2
−
2
x
+
8
from
x
1
=
1
x_1 = 1
x
1
=
1
to
x
2
=
4
x_2 = 4
x
2
=
4
.
See Solution
Problem 14041
Find the zeros of the function:
f
(
x
)
=
5
x
+
4
f(x)=\sqrt{5 x+4}
f
(
x
)
=
5
x
+
4
. Enter your answers as a comma-separated list.
See Solution
Problem 14042
Triangle XYZ is similar to Triangle TUV.
See Solution
Problem 14043
Find the zeros of the function
f
(
x
)
=
7
x
2
+
54
x
−
16
f(x)=7x^{2}+54x-16
f
(
x
)
=
7
x
2
+
54
x
−
16
. List your answers as a comma-separated list.
See Solution
Problem 14044
Find the zeros of the function
f
(
x
)
=
−
25
x
4
+
4
x
2
f(x)=-25 x^{4}+4 x^{2}
f
(
x
)
=
−
25
x
4
+
4
x
2
. Enter answers as a comma-separated list.
See Solution
Problem 14045
Calculate the value of
(
2
3
−
2
)
2
+
(
3
+
2
)
2
(2 \sqrt{3}-\sqrt{2})^{2}+(\sqrt{3}+\sqrt{2})^{2}
(
2
3
−
2
)
2
+
(
3
+
2
)
2
.
See Solution
Problem 14046
Find the zeros of the function
f
(
x
)
=
17
−
3
x
f(x)=17-3x
f
(
x
)
=
17
−
3
x
. Enter answers as a comma-separated list.
See Solution
Problem 14047
Solve the equation
−
18
x
+
9
y
=
81
-18 x + 9 y = 81
−
18
x
+
9
y
=
81
for the variable
y
y
y
.
See Solution
Problem 14048
Solve for
y
y
y
in the equation:
−
18
x
+
9
y
=
81
-18 x + 9 y = 81
−
18
x
+
9
y
=
81
.
See Solution
Problem 14049
Simplify the expression
4.3
g
⋅
m
L
⋅
g
g
⋅
m
L
⋅
s
4.3 \frac{\mathrm{g} \cdot \mathrm{mL} \cdot \mathrm{g}}{\mathrm{g} \cdot \mathrm{mL} \cdot \mathrm{s}}
4.3
g
⋅
mL
⋅
s
g
⋅
mL
⋅
g
.
See Solution
Problem 14050
Solve for 'x' and 'y' in the equation
9
x
+
3
y
=
21
9x + 3y = 21
9
x
+
3
y
=
21
.
See Solution
Problem 14051
Simplify the unit:
9.2
g
⋅
c
m
3
g
⋅
c
m
2
9.2 \frac{\mathrm{g} \cdot \mathrm{cm}^{3}}{\mathrm{g} \cdot \mathrm{cm}^{2}}
9.2
g
⋅
cm
2
g
⋅
cm
3
. What is the simplest form?
See Solution
Problem 14052
If
f
(
−
4
)
=
8
f(-4)=8
f
(
−
4
)
=
8
, what point
(
x
,
y
)
(x, y)
(
x
,
y
)
is on the graph of
y
=
f
(
x
)
y=f(x)
y
=
f
(
x
)
? Explain your reasoning.
See Solution
Problem 14053
What is the molecular formula for the empirical formula
C
3
H
4
O
3
\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}
C
3
H
4
O
3
with a scale factor of 2? A.
C
3
H
4
O
3
\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{3}
C
3
H
4
O
3
B.
C
2
H
2
O
2
\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{2}
C
2
H
2
O
2
C.
C
6
H
8
O
6
\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}
C
6
H
8
O
6
See Solution
Problem 14054
Solve the equation
y
+
4
=
−
2
6
(
x
−
6
)
y + 4 = -\frac{2}{6}(x - 6)
y
+
4
=
−
6
2
(
x
−
6
)
.
See Solution
Problem 14055
Solve the equation
y
+
9
=
−
5
2
(
x
−
2
)
y + 9 = -\frac{5}{2}(x - 2)
y
+
9
=
−
2
5
(
x
−
2
)
.
See Solution
Problem 14056
Solve the inequality:
−
5
(
x
−
6
)
≤
3
(
x
+
2
)
-5(x-6) \leq 3(x+2)
−
5
(
x
−
6
)
≤
3
(
x
+
2
)
.
See Solution
Problem 14057
Calculate
1
,
241
−
589
1,241 - 589
1
,
241
−
589
.
See Solution
Problem 14058
Is
f
=
{
(
a
,
0
)
,
(
c
,
12
)
,
(
d
,
18
)
,
(
b
,
12
)
}
f=\{(a, 0),(c, 12),(d, 18),(b, 12)\}
f
=
{(
a
,
0
)
,
(
c
,
12
)
,
(
d
,
18
)
,
(
b
,
12
)}
a function from
A
=
{
a
,
b
,
c
,
d
}
A=\{a, b, c, d\}
A
=
{
a
,
b
,
c
,
d
}
? Explain your answer.
See Solution
Problem 14059
Determine if the following equations express
y
y
y
as a function of
x
x
x
:
1.
x
2
+
y
2
=
25
[
Select
]
x^{2}+y^{2}=25 \quad[\text { Select }]
x
2
+
y
2
=
25
[
Select
]
2.
2
x
+
3
y
=
10
[
Select
]
2 x+3 y=10 \quad[\text { Select }]
2
x
+
3
y
=
10
[
Select
]
3.
x
=
y
2
−
25
[
Select
]
x=y^{2}-25 \quad[\text { Select }]
x
=
y
2
−
25
[
Select
]
See Solution
Problem 14060
Find the domain and range of
f
(
x
)
=
∣
3
+
3
x
∣
f(x)=|3+3x|
f
(
x
)
=
∣3
+
3
x
∣
as intervals using parentheses and brackets.
See Solution
Problem 14061
Express the interval
[
−
17
,
17
]
[-17,17]
[
−
17
,
17
]
as an absolute value inequality for variable
x
x
x
.
See Solution
Problem 14062
Find the set
S
=
{
x
:
∣
x
2
−
6
∣
>
7
}
S=\{x:|x^{2}-6|>7\}
S
=
{
x
:
∣
x
2
−
6∣
>
7
}
as a union of intervals.
See Solution
Problem 14063
Find the distance
d
d
d
between the points
(
−
5
,
−
5
)
(-5,-5)
(
−
5
,
−
5
)
and
(
7
,
5
)
(7,5)
(
7
,
5
)
in a 2D plane. Provide an exact answer.
See Solution
Problem 14064
Solve the equation
5
z
=
−
40
5 z = -40
5
z
=
−
40
for
z
z
z
. What is the value of
z
z
z
?
See Solution
Problem 14065
Find the value of
y
y
y
in the equation
4
y
=
16
4y = 16
4
y
=
16
.
See Solution
Problem 14066
Solve for
t
t
t
in the equation
t
−
8
=
−
3
\frac{t}{-8}=-3
−
8
t
=
−
3
.
See Solution
Problem 14067
Solve
7
w
=
7
7w=7
7
w
=
7
for
w
w
w
.
See Solution
Problem 14068
Solve the equation:
8
t
+
5
=
77
8t + 5 = 77
8
t
+
5
=
77
.
See Solution
Problem 14069
Solve for
x
x
x
in the equation
x
17
+
18
=
3
\frac{x}{17}+18=3
17
x
+
18
=
3
.
See Solution
Problem 14070
Identify if the transformation
H
(
x
,
y
)
→
(
2
x
,
5
y
)
H(x, y) \rightarrow (2x, 5y)
H
(
x
,
y
)
→
(
2
x
,
5
y
)
is a stretch or dilation.
See Solution
Problem 14071
Solve for
r
r
r
in the equation
−
1
7
r
+
7
=
10
-\frac{1}{7} r + 7 = 10
−
7
1
r
+
7
=
10
.
See Solution
Problem 14072
Determine if the transformation
L
(
x
,
y
)
→
(
0.3
x
,
2
y
)
L(x, y) \to (0.3x, 2y)
L
(
x
,
y
)
→
(
0.3
x
,
2
y
)
is a stretch or dilation.
See Solution
Problem 14073
Find the lengths after dilating points A and B from center O with a scale factor of 3: OA=3, OB=5, AB=4. OA'=?
See Solution
Problem 14074
Find the radius
r
r
r
of a sphere using the volume formula
V
=
4
3
π
r
3
V=\frac{4}{3} \pi r^{3}
V
=
3
4
π
r
3
.
See Solution
Problem 14075
Solve the proportion using cross products:
3
4
=
9
x
−
7
\frac{3}{4}=\frac{9}{x-7}
4
3
=
x
−
7
9
. What is
x
x
x
?
See Solution
Problem 14076
Solve for
r
r
r
in the cylinder volume formula
V
=
π
r
2
h
V=\pi r^{2} h
V
=
π
r
2
h
.
See Solution
Problem 14077
Simplify:
125
=
\sqrt{125}=
125
=
See Solution
Problem 14078
Simplify:
32
=
\sqrt{32}=
32
=
See Solution
Problem 14079
Define the function
f
(
x
)
=
4
int
(
x
)
f(x)=4 \operatorname{int}(x)
f
(
x
)
=
4
int
(
x
)
. Find its domain, intercepts, graph, range, and check continuity.
See Solution
Problem 14080
Simplify
405
\sqrt{405}
405
into the format
a
b
a \sqrt{b}
a
b
. What is
405
=
\sqrt{405}=
405
=
?
See Solution
Problem 14081
Pentagon ABCDE is similar to Pentagon RYMNT. Find the missing side:
A
B
B
C
=
R
Y
□
\frac{A B}{B C}=\frac{R Y}{\square}
BC
A
B
=
□
R
Y
. Options: A E, ER, TN, YM.
See Solution
Problem 14082
Solve the proportion using cross products:
3
4
=
9
x
−
7
\frac{3}{4}=\frac{9}{x-7}
4
3
=
x
−
7
9
. Find
x
x
x
.
See Solution
Problem 14083
Simplify
12
\sqrt{12}
12
to the form
a
b
a \sqrt{b}
a
b
. What is the result?
See Solution
Problem 14084
Simplify
45
\sqrt{45}
45
into the form
a
b
a \sqrt{b}
a
b
. What is the result?
See Solution
Problem 14085
If
△
A
F
G
∼
△
D
R
H
\triangle \mathrm{AFG} \sim \triangle \mathrm{DRH}
△
AFG
∼
△
DRH
, find the missing value in
D
R
A
F
=
D
H
□
\frac{D R}{A F}=\frac{D H}{\square}
A
F
D
R
=
□
DH
. Choices: HD, AH, AG.
See Solution
Problem 14086
Is rotation a similarity transformation? Answer True or False.
See Solution
Problem 14087
Dilation is a non-isometric transformation. True or False?
See Solution
Problem 14088
Solve for
h
h
h
in the cone volume formula:
V
=
1
3
π
r
2
h
V=\frac{1}{3} \pi r^{2} h
V
=
3
1
π
r
2
h
.
See Solution
Problem 14089
Solve for
m
m
m
in the equation
q
+
x
m
=
Λ
q + x m = \Lambda
q
+
x
m
=
Λ
.
See Solution
Problem 14090
Find
m
∠
E
H
F
m \angle E H F
m
∠
E
H
F
if
H
G
undefined
\overrightarrow{H G}
H
G
bisects it, with
m
∠
E
H
G
=
(
15
x
−
19
)
∘
m \angle E H G=(15 x-19)^{\circ}
m
∠
E
H
G
=
(
15
x
−
19
)
∘
and
m
∠
G
H
F
=
(
9
x
+
11
)
∘
m \angle G H F=(9 x+11)^{\circ}
m
∠
G
H
F
=
(
9
x
+
11
)
∘
.
See Solution
Problem 14091
Solve for
b
b
b
in the triangle area formula
A
=
1
2
b
h
A=\frac{1}{2} b h
A
=
2
1
bh
.
See Solution
Problem 14092
Simplify
(
3
x
3
x
−
2
)
4
⋅
(
y
2
x
−
4
5
x
y
−
8
)
3
\left(\frac{3 x^{3}}{x^{-2}}\right)^{4} \cdot\left(\frac{y^{2} x^{-4}}{5 x y^{-8}}\right)^{3}
(
x
−
2
3
x
3
)
4
⋅
(
5
x
y
−
8
y
2
x
−
4
)
3
using positive exponents.
See Solution
Problem 14093
Solve the inequality
x
−
5
4
+
3
−
2
x
3
<
−
2
\frac{x-5}{4}+\frac{3-2 x}{3}<-2
4
x
−
5
+
3
3
−
2
x
<
−
2
.
See Solution
Problem 14094
Solve the inequality
0
≤
2
z
+
5
<
8
0 \leq 2z + 5 < 8
0
≤
2
z
+
5
<
8
.
See Solution
Problem 14095
Convert
1.459
g
/
m
L
1.459 \mathrm{~g} / \mathrm{mL}
1.459
g
/
mL
to
l
b
/
g
a
l
\mathrm{lb} / \mathrm{gal}
lb
/
gal
.
See Solution
Problem 14096
Solve the inequality:
1
2
(
x
−
4
)
−
2
x
≤
5
(
3
−
x
)
\frac{1}{2}(x-4)-2 x \leq 5(3-x)
2
1
(
x
−
4
)
−
2
x
≤
5
(
3
−
x
)
.
See Solution
Problem 14097
Convert
7
f
t
7 \mathrm{ft}
7
ft
to
c
m
\mathrm{cm}
cm
and express the result as a multiple of
1
0
2
c
m
10^{2} \mathrm{cm}
1
0
2
cm
.
See Solution
Problem 14098
Convert
64
f
t
/
s
64 \mathrm{ft/s}
64
ft/s
to
c
m
/
m
i
n
\mathrm{cm/min}
cm/min
and express your answer in scientific notation.
See Solution
Problem 14099
Solve the inequality:
2
y
−
3
2
+
3
y
−
1
5
<
y
−
1
\frac{2 y-3}{2}+\frac{3 y-1}{5}<y-1
2
2
y
−
3
+
5
3
y
−
1
<
y
−
1
See Solution
Problem 14100
Solve the equation:
x
+
5
=
4
(
x
7
+
5
)
x + 5 = 4\left(\frac{x}{7} + 5\right)
x
+
5
=
4
(
7
x
+
5
)
.
See Solution
<
1
...
138
139
140
141
142
143
144
...
270
>
Start learning now
Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.
Download on the
App Store
Get it on
Google Play
Parents
Influencer program
Contact
Policy
Terms