Expression

Problem 9101

Factor the given factor from the expression. x19;x295x19x295x19=\begin{array}{l} x^{\frac{1}{9}} ; x^{\frac{2}{9}}-5 x^{\frac{1}{9}} \\ x^{\frac{2}{9}}-5 x^{\frac{1}{9}}=\square \end{array} \square (Type your answer in factored form. Type your answer using exponential notation. Use integers or fractions for any numbers in the expression.)

See Solution

Problem 9102

To test H0:μ=100H_{0}: \mu=100 versus H1:μ100H_{1}: \mu \neq 100, a simple random sample size of n=20n=20 is obtained from a population that is known to be normally distributed. Answer parts (a)-(d).
Click here to view the t-Distribution Area in Right Tail. (a) If xˉ=105.3\bar{x}=105.3 and s=8.3s=8.3, compute the test statistic. t=\mathrm{t}= \square (Round to three decimal places as needed.)

See Solution

Problem 9103

tan53xsec43xdx\int \tan ^{5} 3 x \sec ^{4} 3 x d x

See Solution

Problem 9104

b) (27)13(-27)^{\frac{-1}{3}}

See Solution

Problem 9105

```latex \text{Given:} \triangle OFG \text{ is a right triangle at } O, \text{ where } OF = 4 \text{ cm and } OG = 3 \text{ cm. Let } M \text{ be the midpoint of } GO, \text{ and let } H \text{ be the reflection of } F \text{ with respect to } AM. \text{ Draw the figure accurately.}
\text{1. What type of quadrilateral is } OFGH? \text{ Justify your answer.}
\text{2. Prove that line } AL \text{ is perpendicular to } GO \text{ at } M \text{ and intersects } GF \text{ at point } L. \text{ Show that } L \text{ is the midpoint of } GF.
\text{3. Calculate the length of } ML.
\text{4. Draw accurately the circumcircle of } \triangle OFG. ```

See Solution

Problem 9106

Expand the following (a) (2x3)(4x+1)(2 x-3)(4 x+1)

See Solution

Problem 9107

Бодлого, дасгал
1. a) 3\sqrt{3} б) 5\sqrt{5}
2. a) 1+21+\sqrt{2} в) 7\sqrt{7} тоонууд иррационал тоо гэж батал.

See Solution

Problem 9108

Unit 4 Retest Question 1 of 30 (1 point) | Question Attempt: 1 of 1 1 2 3 4 5. 6 7
Divide. (20x3+13x2+15x4+12+5x)÷(5x21)\left(20 x^{3}+13 x^{2}+15 x^{4}+12+5 x\right) \div\left(-5 x^{2}-1\right)
Write your answer in the following form: Quotient + Remainder 5x21+\frac{\text { Remainder }}{-5 x^{2}-1}. 20x3+13x2+15x4+12+5x5x21=+5x21\frac{20 x^{3}+13 x^{2}+15 x^{4}+12+5 x}{-5 x^{2}-1}=\square+\frac{\square}{-5 x^{2}-1}

See Solution

Problem 9109

Factor completely. 3u2+19u+14-3 u^{2}+19 u+14

See Solution

Problem 9110

Factor. 2 81x² - 36xw+4w² Π X

See Solution

Problem 9111

3 1 \longdiv { 1 3 0 }

See Solution

Problem 9112

Write down the perimeter as an expression

See Solution

Problem 9113

Factor. x2+13xy+36y2x^{2}+13 x y+36 y^{2}

See Solution

Problem 9114

GENERAL MATHEMATICS Long Quiz S.Y. 2024 - 2025
1. What do we call the monetary charge for the amount we borrow? d. Time a. Interest b. Final amount c. Principal 11
2. What do we call the accumulated amount after an interest rate is being applied in a specified year? a. Interest b. Final amount c. Principal d. Time
3. How many compounding periods does a bimonthly have? c. 12 a. 2 b. 6
4. What is periodic interest rate does a 9%9 \% compounded quarterly? d. 24 a. 9 b. 18
5. What is the final value if principal is 4,500 , time is 2 years, and interest rate is 6%6 \% ? d. 45 a. 5,040 b. 5,400 c. 9,000 d. 50,400 d. 46,332.5546,332.55 a. 46,232.5546,232.55 b. 46,233.5546,233.55 a. 219,291.76219,291.76 b. 219,291.67219,291.67 c. 219219.67 d. 219,291.76219,291.76
8. What is the interest for the item \#5? c. 540 d. 5400 a. 900 b. 4500 d. 832.55
9. What is the interest for the item \#6? c. 823.55 a. 732.55 b. 733.55 d. 29,291.76
10. What is the interest for the item \#7? c. 29219.67 a. 29,291.7629,291.76 b. 29,291.6729,291.67 d. 76%76 \% c. 67%67 \% d. 5.3 years

See Solution

Problem 9115

Factor completely: 3v4x348x33 v^{4} x^{3}-48 x^{3}

See Solution

Problem 9116

6. What is the coefficient of x13x^{13} in the expression (x1x4)89\left(\sqrt{x}-\frac{1}{x^{4}}\right)^{89}.

See Solution

Problem 9117

4(4d+5)-4(-4 d+5)
1 2 \square 16d+2016 d+-20 16s2016 s-20 16+2016+20 16d+20-16 d+20

See Solution

Problem 9118

Fill in the blank. The expression x2+22+x2\frac{x^{2}+2}{2+x^{2}} simplifies to \qquad
The expression x2+22+x2\frac{x^{2}+2}{2+x^{2}} simplifies to \square

See Solution

Problem 9119

Which expression is equivalent to (212234)2\left(2^{\frac{1}{2}}-2^{\frac{3}{4}}\right)^{2} ? 234\sqrt[4]{2^{3}} 25\sqrt{2^{5}} 434\sqrt[4]{4^{3}} 45\sqrt{4^{5}}

See Solution

Problem 9120

Simplify this expression. (2+3)(57)(\sqrt{2}+\sqrt{3})(\sqrt{5}-\sqrt{7}) 5+2\sqrt{5}+\sqrt{-2} 10+151421\sqrt{10}+\sqrt{15}-\sqrt{14}-\sqrt{21} 25272 \sqrt{5}-2 \sqrt{7} 25+3527372 \sqrt{5}+3 \sqrt{5}-2 \sqrt{7}-3 \sqrt{7}

See Solution

Problem 9121

c) limxx4e3x=\lim _{x \rightarrow \infty} x^{4} e^{-3 x}=

See Solution

Problem 9122

Simplify this radical. x13\sqrt{x^{13}} 13x13 \sqrt{x} 6xx6 x \sqrt{x} xx12x \sqrt{x^{12}} x6xx^{6} \sqrt{x}

See Solution

Problem 9123

Which is the rationalized form of the expression xx+7\frac{\sqrt{x}}{\sqrt{x}+\sqrt{7}} ? a. x7xx7\frac{x-\sqrt{7 x}}{x-7} c. x+7xx7\frac{x+\sqrt{7 x}}{x-7} b. 7x7\frac{\sqrt{7 x}}{7} d. xx+7\frac{x}{x+7}

See Solution

Problem 9124

What is x5y6\sqrt{x^{5} y^{6}} expressed in simplified form? x2yxx^{2} y \sqrt{x} x2y2xyx^{2} y^{2} \sqrt{x y} xyxyx y \sqrt{x y} x2y3xx^{2} y^{3} \sqrt{x}

See Solution

Problem 9125

10. What is the imaginary part of the complex number 75i7-5 i ? a. 7 b. -5 c. 5 d. 0 a b C d not given

See Solution

Problem 9126

20. Which complex number lies on the imaginary axis? a. 4+0i4+0 i b. 0+3i0+3 i c. 2+2i-2+2 i d. 1i1-i a b C d not given

See Solution

Problem 9127

4 1 \longdiv { 2 6 0 } (16) 4 1 \longdiv { 2 8 0 }

See Solution

Problem 9128

Givide 4 1 \longdiv { 2 8 5 } (5) 41) 306 4 1 \longdiv { 2 9 0 } 4 1 \longdiv { 3 1 0 } (7) 4 1 \longdiv { 2 9 5 } 41) 315 (8) 41) 320

See Solution

Problem 9129

Simplify 36\frac{3}{\sqrt{6}}.

See Solution

Problem 9130

(9) (I3) 4 1 \longdiv { 3 2 5 } 4 1 \longdiv { 3 5 0 } (10) 4 1 \longdiv { 3 3 0 } (14) 4 1 \longdiv { 3 6 0 } (II) 4 1 \longdiv { 3 3 5 } (I5) 4 1 \longdiv { 3 7 0 } (12) (16) 4 1 \longdiv { 3 4 0 } 4 1 \longdiv { 3 8 0 }

See Solution

Problem 9131

\begin{tabular}{|l|l|} \hline & \\ \hline 1 & 03x3dx\int_{0}^{3} x^{3} d x \\ \hline \end{tabular}

See Solution

Problem 9132

(2) 3 1 \longdiv { 7 8 } (6) (3) 3 1 \longdiv { 8 8 } (7) 3 1 \longdiv { 1 0 0 } \qquad - (4) (8) 3 1 \longdiv { 9 0 } 3 1 \longdiv { 1 1 5 }

See Solution

Problem 9133

(9) 3 1 \longdiv { 1 3 0 } (I3) 3 1 \longdiv { 1 7 0 } (10) 3 1 \longdiv { 1 4 5 } (14) 3 1 \longdiv { 1 8 0 } (II) 3 1 \longdiv { 1 5 5 } (15) 3 1 \longdiv { 1 9 0 } (12) 3 1 \longdiv { 1 6 0 } (16) 3 1 \longdiv { 2 0 0 }

See Solution

Problem 9134

Evaluate: +5283]0+(526)(1258)\left.+5^{2}-8^{3}\right]^{0}+\left(5^{26}\right)\left(125^{-8}\right)- (Enter a value/number)

See Solution

Problem 9135

16 \text{ Verschiedene Grundstücke unterscheiden sich nur durch die Länge einer Strecke } x. \text{ Judith, Pia, Cem und Lukas haben Terme für den Flächeninhalt der Grundstücke in } \mathrm{m}^{2} \text{ notiert.}
\text{Judith: } 11,4 \cdot x-4,3 \cdot(x-9,9)
\text{Cem: } 9,9 \cdot 11,4+(x-9,9) \cdot 7,1
\text{Pia: } 9,9 \cdot 4,3+9,9 \cdot 7,1+7,1 \cdot(x-9,9)
\text{Lukas: } 9,9 \cdot 4,3+x \cdot 7,1
\text{a) Gib an, welcher Term zu welcher Zeichnung gehört. Begründe deine Entscheidung.}
\text{b) Gib einen Term für den Umfang des Grundstücks an und berechne, für welchen Wert von } x \text{ der Umfang 52 m beträgt.}

See Solution

Problem 9136

Simplify. Assume all variables are positive. r127r87r^{\frac{12}{7}} \cdot r^{-\frac{8}{7}}
Write your answer in the form AA or AB\frac{A}{B^{\prime}} where AA and BB are constants or variable expressions that have no variables in common. All exponents in your answer should be positive. \square Submit
Work it out Not feeling ready yet? These can help: here to search

See Solution

Problem 9137

A circle with a diameter of 16 yd is shown. Answer the parts below. Make sure you use the correct units in your answers. If necessary, refer to the list of geometry formulas. (a) Find the exact circumference of the circle. Write your answer in terms of π\pi. Exact circumference: \square (b) Using the ALEKS calculator, approximate the circumference of the circle.
To do the approximation, use the π\pi button on the calculator, and round your answer to the nearest hundredth.
Approximate circumference: \square

See Solution

Problem 9138

A swimming pool has a volume of 213yd3213 \mathrm{yd}^{3}. Use the table of conversion facts to find out how many gallons of water it would take to completely fill the swimming pool.
Round your answer to two decimal places. \square gal
Conversion facts for volume and capacity 1 cubic yard (yd3)201.97\left(\mathrm{yd}^{3}\right) \approx 201.97 gallons (gal) 1 cubic foot (ft3)7.48\left(\mathrm{ft}^{3}\right) \approx 7.48 gallons ( gal) 231 cubic inches (\left(\right. in 3)=1\left.^{3}\right)=1 gallon (gal) Note that \approx means "is approximately equal to". For this problem, treat \approx as if it were ==.

See Solution

Problem 9139

5. Ermitteln Sie die zwei fehlenden trigonometrischen Funktionswerte desselben Winkels (ohne Verwendung des Taschenrechners). sa. sinα=40/41,α\sin \alpha=-40 / 41, \alpha \in QIII bb. cosα=0,4,180<α<270\cos \alpha=-0,4,180^{\circ}<\alpha<270^{\circ} c. tanα=0,75,αQ\tan \alpha=0,75, \alpha \in Q I d. sinα=1/22,90<a<180\sin \alpha=1 / 2 \cdot \sqrt{2}, 90^{\circ}<a<180^{\circ}

See Solution

Problem 9140

Simplify (2+3)216÷2(2+3)^{2}-16 \div 2.
The solution is

See Solution

Problem 9141

Question Video Examples
A cylinder has a base diameter of 6 meters and a height of 14 meters. What is its volume in cubic meters, to the nearest tenths place?

See Solution

Problem 9142

- 37,500 m² - 0.0375 m20.0375 \mathrm{~m}^{2} - 0.0000375 m20.0000375 \mathrm{~m}^{2} - 37,500,000 m237,500,000 \mathrm{~m}^{2}

See Solution

Problem 9143

121x5dx\int_{1}^{2} \frac{1}{x^{5}} d x

See Solution

Problem 9144

Algebra 1 W. 5 Add polynomials to find perimeter BAS Video Questions answered
Find the perimeter. Simplify your answer. 38 Time clapsed 00 34 16 HR M N जह SmartScore out of 100 5ミх \square Submit
Work it out Not feeling ready yet? These can help: Add and subtract like terms Lesson: Simplifying expressions 10:09 AM 12/2/2024

See Solution

Problem 9145

Find the perimeter of the figure pictured below.
Perimeter: \square Submit Question

See Solution

Problem 9146

Exercise 3. Compute the following integrals by substitution: (a) 14xdx\int \frac{1}{\sqrt{4-x}} d x (g) sin7(x)cos(x)dx\int \sin ^{7}(x) \cos (x) d x (b) exex+1dx\int \frac{e^{x}}{\sqrt{e^{x}+1}} d x (h) extan(ex)cos2(ex)dx\int \frac{e^{x} \tan \left(e^{x}\right)}{\cos ^{2}\left(e^{x}\right)} d x (c) exex+1dx\int \frac{e^{x}}{\sqrt{e^{x}+1}} d x (i) sin(2x)(1+cos2(x))dx\int \sin (2 x)\left(1+\cos ^{2}(x)\right) d x (d) 1xlog(x)dx\int \frac{1}{x \log (x)} d x (j) sin(x)2+cos(x)dx\int \frac{\sin (x)}{2+\cos (x)} d x (e) log3(x)+3log(x)2xdx\int \frac{\log ^{3}(x)+3 \log (x)-\sqrt{2}}{x} d x (k) x1+x4dx\int \frac{x}{1+x^{4}} d x (f) sin(2+x)3xdx\int \frac{\sin (2+\sqrt{x})}{3 \sqrt{x}} d x

See Solution

Problem 9147

π2πsin3xdx\int_{-\pi}^{2 \pi} \sin 3 x d x

See Solution

Problem 9148

Use a calculator or a computer to evaluate the definite integral.
Round your answer to four decimal places. 55(et2)dt=\int_{-5}^{5}\left(e^{-t^{2}}\right) d t=

See Solution

Problem 9149

Assume XX has a normal distribution N(9,52)N\left(9,5^{2}\right). Find E(5X4)2E(5 X-4)^{2}
Answer: \square

See Solution

Problem 9150

Find (a) sinθ\sin \theta, (b) cosθ\cos \theta, and (c) tanθ\tan \theta for the given quadrantal angle. 11π11 \pi (a) Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. sin(11π)=\sin (11 \pi)= \square (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) B. The answer is undefined.

See Solution

Problem 9151

Find class boundaries, midpoint, and width for the class. 8.12-13.48
Part: 0/30 / 3
Part 1 of 3
The class boundaries for the class are \square - \square Skip Part Check

See Solution

Problem 9152

721(6x2+2x10)dx7 \quad \int_{-2}^{-1}\left(6 x^{2}+2 x-10\right) d x

See Solution

Problem 9153

Let pp and qq be the following statements. pp : The bake sale is on Saturday. qq : Ahmad will make cookies. Consider this argument. Premise 1: If the bake sale is on Saturday, then Ahmad will make cookies. Premise 2: The bake sale is on Saturday. Conclusion: Therefore, Ahmad will make cookies. (a) Write the argument in symbolic form.
Premise 1: p qq Premise 2: Conclusion: \square

See Solution

Problem 9154

Heli invested $10,000\$ 10,000 in a 401(k)401(k) account. After 8 years, the account was worth $13,900\$ 13,900.
What was Heli's return on investment? Round to the nearest tenth of a percent, if necessary. 4.9%4.9 \% 28%28 \% 39%39 \% 3.5%3.5 \%

See Solution

Problem 9155

Calculate the value of the following limit: limn3n2+n3n25n\lim _{n \rightarrow \infty} \sqrt{3 n^{2}+n}-\sqrt{3 n^{2}-5 n}

See Solution

Problem 9156

Evaluate the expression below if x=1x=-1 and y=3y=3 3x2y23 x^{2}-y^{2} 1 Pt A B C
A -6 B 6 C -12
D 22

See Solution

Problem 9157

818336\frac{\sqrt{81}}{\sqrt[3]{8} \sqrt{36}}

See Solution

Problem 9158

1x4+9x+6x34\sqrt[4]{\frac{1}{x^{4}}+\frac{9 x+6}{x^{3}}}

See Solution

Problem 9159

8. Calculate the value of the following limit: limnn4+n2n45n2+n\lim _{n \rightarrow \infty} \sqrt{n^{4}+n^{2}}-\sqrt{n^{4}-5 n^{2}+n}
ANS:

See Solution

Problem 9160

Use the polynomial to answer the questions: 23x7+x96x3+10+2x2-23 x^{7}+x^{9}-6 x^{3}+10+2 x^{2}
What is the degree of the polynomial?
What is the leading coefficient of the polynomial? \square

See Solution

Problem 9161

01x10x2dx\int_{0}^{1} x \sqrt{10-x^{2}} d x

See Solution

Problem 9162

Answer the following. (a) Find an angle between 00^{\circ} and 360360^{\circ} that is coterminal with 11701170^{\circ}. (b) Find an angle between 0 and 2π2 \pi that is coterminal with 17π10-\frac{17 \pi}{10}.
Give exact values for your answers. (a) \square。 (b) \square radians

See Solution

Problem 9163

9. Calculate the value of the following limit: limn(sinn(π/6)+sinn(π/3)+sinn(π/2))1/n\lim _{n \rightarrow \infty}\left(\sin ^{n}(\pi / 6)+\sin ^{n}(\pi / 3)+\sin ^{n}(\pi / 2)\right)^{1 / n}

See Solution

Problem 9164

Given that CARPET\triangle C A R \cong \triangle P E T, which of the following must be true? CP\angle C \cong \angle P RATP\overline{R A} \cong \overline{T P} Two of these CRET\overline{C R} \cong \overline{E T}

See Solution

Problem 9165

Given that JAMBRO\triangle J A M \cong \triangle B R O, which of the following must be true? Two of these JMRB\overline{J M} \cong \overline{R B} JABO\overline{J A} \cong \overline{B O} JB\angle J \cong \angle B

See Solution

Problem 9166

(x3)2(x2)1\frac{\left(x^{3}\right)^{2}}{\left(x^{2}\right)^{-1}}

See Solution

Problem 9167

L=6.5×1263×(15.27.2)3L=\frac{6.5 \times 12-6}{3 \times(15.2-7.2)}-3

See Solution

Problem 9168

11. How many real third roots does 1,728 have?
12. How many real sixth roots does 15,625 have?

See Solution

Problem 9169

Simplify the expression without using a calculator. lnea2+8=\ln e^{a^{2}+8}= \square n口 ee

See Solution

Problem 9170

Factor y35y2+6y30y^{3}-5 y^{2}+6 y-30 completely. y35y2+6y30=y^{3}-5 y^{2}+6 y-30=

See Solution

Problem 9171

8. Calculate the value of the following limit: limnn4+n2n45n2+n\lim _{n \rightarrow \infty} \sqrt{n^{4}+n^{2}}-\sqrt{n^{4}-5 n^{2}+n}

See Solution

Problem 9172

Which pair of binomials matches the given polynomial? 25a2+70ab+49b225 a^{2}+70 a b+49 b^{2} (5a+7)(5a+b)(5 a+7)(5 a+b) (5a+7)(5ab)(5 a+7)(5 a-b) (5a+7b)(5a+7b)(5 a+7 b)(5 a+7 b) (5a+7)(5a+5b)(5 a+7)(5 a+5 b)

See Solution

Problem 9173

Simplify the expression without using a calculator. log5514=\log _{5} 5^{14}= \square log\square \log _{\square}

See Solution

Problem 9174

Simplify the expression without using a calculator. log12(1128)=\log _{\frac{1}{2}}\left(\frac{1}{128}\right)= \square log\square \log _{\square} \square

See Solution

Problem 9175

8. Calculate the value of the following limit:
ANS: \qquad limnn4+n2n45n2+n\lim _{n \rightarrow \infty} \sqrt{n^{4}+n^{2}}-\sqrt{n^{4}-5 n^{2}+n}
ANS:

See Solution

Problem 9176

1/201 / 20
Find an equivalent kifaction: 24/6

See Solution

Problem 9177

Simplify the expression without using a calculator. lne6=\ln e^{6}=

See Solution

Problem 9178

9. Calculate the value of the following limit: limn(sinn(π/6)+sinn(π/3)+sinn(π/2))1/n\lim _{n \rightarrow \infty}\left(\sin ^{n}(\pi / 6)+\sin ^{n}(\pi / 3)+\sin ^{n}(\pi / 2)\right)^{1 / n}

See Solution

Problem 9179

Simplify the expression without using a calculator. log9(181)=\log _{9}\left(\frac{1}{81}\right)= \square \square

See Solution

Problem 9180

For Ecercises 29-32, find the exeact value. (31) 2cos1(32)tan1332 \cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)-\tan ^{-1} \frac{\sqrt{3}}{3}

See Solution

Problem 9181

What is x249x^{2}-49 factored completely? A. (x+7)(x7)(x+7)(x-7) B. (7x+1)(7x1)(7 x+1)(7 x-1) C. (x7)2(x-7)^{2} D. (7x1)2(7 x-1)^{2}

See Solution

Problem 9182

The math department at your school is giving away a graphing calculator as a prize to celebrate math month. There are 800 students at the school. There are 240 freshmen, 207 sophomores and the remaining students are juniors and seniors.
If a student is chosen at random, what is the probablity that the student is not a freshmen?

See Solution

Problem 9183

Simplify the expression without using a calculator. log22=\log _{2} 2= \square log8\square \log _{8} \square

See Solution

Problem 9184

9. Explain why rewriting 50\sqrt{50} as 252\sqrt{25} \cdot \sqrt{2} helps you simplify 50\sqrt{50}, but rewriting 50\sqrt{50} as 105\sqrt{10} \cdot \sqrt{5} does not.

See Solution

Problem 9185

A patient is admitted with fever over 39.5C. The order is to administer lbuprofen liquid 470 mg PO q8H PRN for fever greater than 38.5C. Ibuprofen is available as 500mg/5 mL500 \mathrm{mg} / 5 \mathrm{~mL}.
You will administer \qquad mL to the patient per dose? \square A

See Solution

Problem 9186

1. 24×357\frac{2-4 \times 3}{5-7}

See Solution

Problem 9187

Multiply. 23×47\frac{2}{3} \times \frac{4}{7}

See Solution

Problem 9188

(b) 5(x+2)(x2+1)dx\int \frac{5}{(x+2)\left(x^{2}+1\right)} d x.

See Solution

Problem 9189

Convert the fraction below to a mixed number. Be sure to simplify the fraction portion as much as possible. Fraction to change: 144\frac{14}{4}
Whole Number: Numerator: \square Denominator: \square Gonfirm
TYPE YOUR ANSWER AND CLICK ON CONFIRM. Activa Go to Se

See Solution

Problem 9190

45xx216dx\int_{4}^{5} x \sqrt{x^{2}-16} d x

See Solution

Problem 9191

11. Write each radical in simplest form, if possible, a) 163\sqrt[3]{16} b) 813\sqrt[3]{81} c) 2563\sqrt[3]{256} d) 1283\sqrt[3]{128} e) 603\sqrt[3]{60} f) 1923\sqrt[3]{192} 31353 \sqrt{135} h) 1003\sqrt[3]{100}

See Solution

Problem 9192

How many radians is 100100^{\circ} ? (Give the exact answer in simplest forr \begin{tabular}{|c|} \hline Answer \\ \hline radians \\ \hline \end{tabular}

See Solution

Problem 9193

Suppose that O{ }^{O} partners equally share the profits from a sale of $3,600\$ 3,600. Which algebraic expression represents this situation? 3600+03600+0 3600p3600-p 3600p 3600p\frac{3600}{p}

See Solution

Problem 9194

Factor the polynomial completely. P(x)=x2+49P(x)=\begin{array}{l} P(x)=x^{2}+49 \\ P(x)=\square \end{array} \square Find all its zeros. State the multiplicity of each zero. (Order your answers from smallest to largest real, followed by complex answers ordered smallest to largest real part, then smallest to largest imaginary part.) x=x= \square with multiplicity x=x= \square with multiplicity \square

See Solution

Problem 9195

Convert the mixed numeral below to a fraction. Mixed numeral to change: 4564 \frac{5}{6} Numerator: \square Denominator: \square Gonfirm

See Solution

Problem 9196

\#2) Convert ints mixed fractions a) 195\frac{19}{5} b) 194\frac{19}{4} c) 398\frac{39}{8}

See Solution

Problem 9197

Simplify 5r+4p8r+65 r+4 p-8 r+6

See Solution

Problem 9198

Sophia's dog just had puppies! She decides to spend 3/43 / 4 of her day playing with them. If she usually spends 2/52 / 5 of her day doing homewôrk, what fraction of her day is she spending on both puppies and homework combined?
Step 1 Multiplying your fraction

See Solution

Problem 9199

Найди площадь треугольника MNK, если MN=25\mathrm{MN}=25 дм, MK=330\mathrm{MK}=330 см, а угол M равен 3030^{\circ}
Запиши ответ числом. S=qм2\mathrm{S}=\square \mathrm{qм}^{2}

See Solution

Problem 9200

What is the greatest common factor of 2 and 5 ? \square

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord