Math  /  Calculus

Question(b) 5(x+2)(x2+1)dx\int \frac{5}{(x+2)\left(x^{2}+1\right)} d x.

Studdy Solution
Substitute the values of AA, BB, and CC back into the partial fractions and integrate each term separately:
5(x+2)(x2+1)dx=1x+2dx+x+2x2+1dx\int \frac{5}{(x+2)(x^2+1)} \, dx = \int \frac{1}{x+2} \, dx + \int \frac{-x + 2}{x^2+1} \, dx
Integrate each term:
1. 1x+2dx=lnx+2+C1\int \frac{1}{x+2} \, dx = \ln|x+2| + C_1
2. xx2+1dx=12lnx2+1+C2\int \frac{-x}{x^2+1} \, dx = -\frac{1}{2} \ln|x^2+1| + C_2 (using substitution u=x2+1u = x^2+1)
3. 2x2+1dx=2tan1(x)+C3\int \frac{2}{x^2+1} \, dx = 2 \tan^{-1}(x) + C_3
Combine the results:
5(x+2)(x2+1)dx=lnx+212lnx2+1+2tan1(x)+C\int \frac{5}{(x+2)(x^2+1)} \, dx = \ln|x+2| - \frac{1}{2} \ln|x^2+1| + 2 \tan^{-1}(x) + C
where C=C1+C2+C3C = C_1 + C_2 + C_3.
The integral evaluates to:
lnx+212lnx2+1+2tan1(x)+C\ln|x+2| - \frac{1}{2} \ln|x^2+1| + 2 \tan^{-1}(x) + C

View Full Solution - Free
Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord