Trigonometry

Problem 601

10. Find the exact value of cosI\cos I in simplest radical form.

See Solution

Problem 602

Find the exact value of tanO\tan O in simplest radical form.

See Solution

Problem 603

Question 36, *5.5.89 HW Score: 88.16\% points Points: 0 of 1
Use a calculator to solve the equation on the interval [0,2π)[0,2 \pi). tanx=8\boldsymbol{\operatorname { t a n }} x=-8
What are the solutions in the interval [0,2π)[0,2 \pi) ? Select the correct choice below and, if necessary, fil choice. A. x=x= \square (Type your answer in radians. Round to four decimal places as needed. Use a comma to B. There is no solution.

See Solution

Problem 604

Question 38, *5.5.85 HW Score: 93.42%,393.42 \%, 3 points
Use a calculator to solve the equation on the interval [0,2π)[0,2 \pi). Points: 0 of 1 sinx=0.402\sin x=-0.402
What are the solutions in the interval [0,2π)[0,2 \pi) ? Select the correct choice below and, if necessary, fill choice. A. x=x= \square (Type your answer in radians. Round to four decimal places as needed. Use a comma to B. There is no solution.

See Solution

Problem 605

Rewrite each expression as a single trigonometric ratio, and then evaluate the ratio. a) tan170tan1101+tan170tan110\frac{\tan 170^{\circ}-\tan 110^{\circ}}{1+\tan 170^{\circ} \tan 110^{\circ}}

See Solution

Problem 606

1. (13 points) Simplify the trigonometric expression by writing the expression in terms of sines and cosines initially and then simplifying. Your final answer should contain no quotients and be expressed as a single trigonometric function of θ\theta only. cosθ1sinθsecθ\frac{\cos \theta}{1-\sin \theta}-\sec \theta

See Solution

Problem 607

The right triangle below has acute angle alpha (α)(\alpha).
Using this triangle, which of the below are true? sinα=817\sin \alpha=\frac{8}{17} sinα=1517\sin \alpha=\frac{15}{17} cosα=1517\cos \alpha=\frac{15}{17} cosα=817\cos \alpha=\frac{8}{17}

See Solution

Problem 608

Find an equation for the sine graph, f(x)f(x) :
Write your answer in the form f(x)=\mathrm{f}(\mathrm{x})= Asin(Bx+C)+D\mathrm{A} \sin (\mathrm{Bx}+\mathrm{C})+\mathrm{D}, where A,B,C\mathrm{A}, \mathrm{B}, \mathrm{C}, and D are real numbers. f(x)=f(x)= \square

See Solution

Problem 609

Question Show Examples
In HIJ,i=40 cm,h=45 cm\triangle \mathrm{HIJ}, i=40 \mathrm{~cm}, h=45 \mathrm{~cm} and H=112\angle \mathrm{H}=112^{\circ}. Find all possible values of I\angle \mathrm{I}, to the nearest 10th of aa degree.
Answer Attempt 1 out of 2

See Solution

Problem 610

Graph the following function: y=csc(12(xπ4))1y=\csc \left(\frac{1}{2}\left(x-\frac{\pi}{4}\right)\right)-1
Drag the movable red point to shift the function, the black point to set the vertical asymptotes, and the blue point at the correct set of coordinates. You may click on a point to verify its coordinates.
Note: Make sure to move the points in the direction of the phase shift represented in the function.
Provide your answer below:

See Solution

Problem 611

Match each trigonometric function with its derivative by entering the correct letter in the gi A. y=tan(7x)y=\tan (7 x) B. y=tan(x7)y=\tan \left(x^{7}\right) dydx=sec2(x7)\frac{d y}{d x}=\sec ^{2}\left(x^{7}\right) C. y=cot7(x)y=\cot ^{7}(x) dydx=7cot6(x)csc(x)\frac{d y}{d x}=-7 \cot ^{6}(x) \csc (x) dydx=7x6sec2(x7)\frac{d y}{d x}=7 x^{6} \sec ^{2}\left(x^{7}\right) D. y=7cot(x)y=7 \cot (x) dydx=7cot6(x)csc2(x)\frac{d y}{d x}=-7 \cot ^{6}(x) \csc ^{2}(x) E. Not the derivative of A,B,CA, B, C, or DD. dydx=7csc2(x)dydx=7sec2(7x)\begin{array}{l} \frac{d y}{d x}=-7 \csc ^{2}(x) \\ \frac{d y}{d x}=7 \sec ^{2}(7 x) \end{array}

See Solution

Problem 612

Part 1 of 3
Write the ratios for sinM,cosM\sin M, \cos M, and tanM\tan M.

See Solution

Problem 613

19-34 - Amplitude and Period of the function, and sketch its grap
19. y=cos2xy=\cos 2 x

See Solution

Problem 614

Find the measure of side c .

See Solution

Problem 615

Find the value of xx.

See Solution

Problem 616

Question 1
There are many trig identities. They allow you to solve (trig) equations by hand, and are helpful with calculus.
Below is (the left side of) one trig identity. Using the reading in textbook sections 7.1[3,7.2Cl37.1{ }^{[3}, 7.2 \mathrm{Cl}^{3}, and 7.3 (or other links below), identify this formula and type the other side of the identity in the empty box. cos(x)cos(y)sin(y)sin(x)=\cos (x) \cos (y)-\sin (y) \sin (x)=

See Solution

Problem 617

tower?
61. Elevation of a Kite A tourist is lying on the beach, flying a kite. The tourist holds the end of the kite string at ground level and estimates the angle of elevation of the kite to be 5050^{\circ}. If the string is 450 ft long, how high is the kite above the ground?

See Solution

Problem 618

Use a calculator to approximate the function values in both radians and degrees to 4 decimal places.
Part: 0/30 / 3
Part 1 of 3 arctan29rad\arctan 29 \approx \square \mathrm{rad} \approx \square^{\circ}

See Solution

Problem 619

33-40 ■ Value of an Expression expression.
33. cos(sin1(45))\cos \left(\sin ^{-1}\left(\frac{4}{5}\right)\right)

See Solution

Problem 620

Use a calculator to approximate the function values in both radians and degrees to 4 decimal places.
Part: 0/30 / 3 \square
Part 1 of 3 arctan29\arctan 29 \approx \square \square

See Solution

Problem 621

Question 9 (1 point) Saved cos(π2x)=sinx\cos \left(\frac{\pi}{2}-x\right)=\sin x True False
Question 10 (1 point) \checkmark Saved cos(x+y)=cosx+cosy\cos (x+y)=\cos x+\cos y True False

See Solution

Problem 622

Determine the exact value of cot5π3\cot \frac{5 \pi}{3}.

See Solution

Problem 623

An equivalent trigonometric expression for cos[x+π2)\cos \left[x+\frac{\pi}{2}\right) is sinx\sin x sinx-\sin x cosx\cos x none of the above
Question 15 (3 points) \checkmark Saved
An equivalent trigonometric expression for tan(x)\tan (-x) is cotx\cot x tanx\tan x cotx-\cot x tanx-\tan x

See Solution

Problem 624

ic equation for all values 7x<7-7 \leq x<7. 3cot12x=3\sqrt{3} \cot \frac{1}{2} x=3

See Solution

Problem 625

Find the amplitude and period for 3cos(2x)-3 \cos (2 x).

See Solution

Problem 626

Question Watch Vidè̀o
Solve the following equation for all values of 0θ<2π0 \leq \theta<2 \pi. tan2θtanθ=0\tan ^{2} \theta-\tan \theta=0

See Solution

Problem 627

cscθsinθ\frac{\csc \theta}{\sin \theta}

See Solution

Problem 628

2. Find each ratio. SinA=\operatorname{Sin} A= cosA=\cos A= TanA=\operatorname{Tan} A= SinB=\operatorname{Sin} B= cosB=\cos B= TanB=\operatorname{Tan} B=

See Solution

Problem 629

Simplify the expression 7cot2x7csc2x7 \cot^2 x - 7 \csc^2 x to a single trigonometric function with no denominator.

See Solution

Problem 630

```latex Un grupo de amigos ha viajado a México y visitan Chichén-Itzá. Una vez estando allá se acercan a admirar el Templo de Kukulkán que mide 30 m de altura y cuya base es un cuadrado de 55.3 m de lado. Para esto se ubican en línea recta de frente al templo como muestra la figura adjunta.
Claudia (punto C ) se encuentra en un punto tal que el ángulo de elevación desde el piso hasta la cima es de 2626^{\circ}. Desde la posición de Felipe (Punto F) el ángulo de elevación desde el piso hasta la cima es de 3737^{\circ}. La distancia desde la posición que toma Luis (punto L) hasta la cima del templo es de 103m.
¿Cuál es la medida del ángulo de elevación desde la posición de Luis hasta la cima del templo? El ángulo de elevación es de Respuesta grados sexagesimales Usa leyes de trigonometría ```

See Solution

Problem 631

a single trig function with no denominator. 1tan2xsec2x\frac{-1-\tan ^{2} x}{\sec ^{2} x}
Atrempl 1 out of:

See Solution

Problem 632

Watch Vidêo. he trigonometric equation for all values 0x<2π0 \leq x<2 \pi. 3secx=2\sqrt{3} \sec x=2

See Solution

Problem 633

gonometric equation for all values 0x<2π0 \leq x<2 \pi. cscx2=0\csc x-2=0

See Solution

Problem 634

Question Solve the trigonometric equation for all values 0x<14π50 \leq x<\frac{14 \pi}{5}. 3cot57x=1\sqrt{3} \cot \frac{5}{7} x=1

See Solution

Problem 635

netric equation for all values 3π<x<3π-3 \pi<x<3 \pi. cot13x1=0\cot \frac{1}{3} x-1=0

See Solution

Problem 636

2 Rewrite cos4x\cos 4 x in terms of cosx\cos x and powers of cosx\cos x. ( 3 points) (Note: The answer cannot have multiple angles of cosines)

See Solution

Problem 637

Solve for xx in the equation 2sinx=3tanx2 \sin x = \sqrt{3} \tan x for 0x3600^{\circ} \leq x \leq 360^{\circ}.

See Solution

Problem 638

Find θ\theta such that 4sin2θ4=14 \sin^{2} \theta - 4 = -1 for 0θ3600^{\circ} \leq \theta \leq 360^{\circ}.

See Solution

Problem 639

Solve for 0x3600 \leq x \leq 360^{\circ}: 4cot2x9cosecx+6=04 \cot ^{2} x - 9 \operatorname{cosec} x + 6 = 0.

See Solution

Problem 640

Prove that sin60tan45tan30sin240tan315tan210=0\sin 60^{\circ} \cdot \tan 45^{\circ} \cdot \tan 30^{\circ} - \sin 240^{\circ} \cdot \tan 315^{\circ} \cdot \tan 210^{\circ} = 0.

See Solution

Problem 641

Prove the identity: sinx1+cosx+1+cosxsinx=2sinx\frac{\sin x}{1+\cos x}+\frac{1+\cos x}{\sin x}=\frac{2}{\sin x}.

See Solution

Problem 642

Find xx when y=π4y=\frac{\pi}{4} and y=3π4y=\frac{3 \pi}{4} for x=csc(y)x=\csc(y).

See Solution

Problem 643

Find the angle of depression from a camera 12 feet high to a point 5 feet high, 35 feet away from the wall.

See Solution

Problem 644

Find the height of a 63.9 m funicular track inclined at an angle of 40240^{\circ} 2^{\prime}.

See Solution

Problem 645

Find the angle of elevation from a player's eyes at 6.2 ft to a rim at 10 ft, 15 ft away.

See Solution

Problem 646

Find the exact values of the six trigonometric functions for the angle θ\theta with point (7,24)(-7,24).

See Solution

Problem 647

Find the exact value of secA\sec A if sinA=59\sin A = -\frac{5}{9} and AA is in quadrant 3.

See Solution

Problem 648

Calculate tg11π6\operatorname{tg} \frac{11 \pi}{6}.

See Solution

Problem 649

Find sinθ\sin \theta given cscθ=445\csc \theta = \frac{\sqrt{44}}{5}. Rationalize denominators if needed.

See Solution

Problem 650

Find the other trigonometric functions of θ\theta if sinθ=36\sin \theta=-\frac{\sqrt{3}}{6} and cosθ>0\cos \theta>0.

See Solution

Problem 651

Find the remaining trigonometric functions of θ\theta if sinθ=36\sin \theta=\frac{\sqrt{3}}{6} and cosθ>0\cos \theta>0. What is cosθ\cos \theta?

See Solution

Problem 652

Find sinθ\sin \theta given cscθ=204\csc \theta = \frac{\sqrt{20}}{4}. Simplify your answer, including any radicals.

See Solution

Problem 653

Determine the signs of the six trigonometric functions for the angle 261261^{\circ}. Fill in the table.

See Solution

Problem 654

Find the quadrants for angle θ\theta where cosθ<0\cos \theta < 0 and tanθ>0\tan \theta > 0. Choose from: A. IV, B. II, C. I, D. III.

See Solution

Problem 655

Find the quadrant(s) where sinα<0\sin \alpha<0 and secα<0\sec \alpha<0. Answer as 1,2,31,2,3, or 4, separated by commas.

See Solution

Problem 656

Find the quadrant(s) for angles where cscα>0\csc \alpha > 0 and cosα>0\cos \alpha > 0. Answer as 1,2,31,2,3, or 4.

See Solution

Problem 657

Find cosθ\cos \theta if sinθ=45\sin \theta=\frac{4}{5} and θ\theta is in quadrant I.

See Solution

Problem 658

Find tanθ\tan \theta if sinθ=12\sin \theta = -\frac{1}{2} and θ\theta is in quadrant IV.

See Solution

Problem 659

Find the remaining trigonometric functions of θ\theta if tanθ=34\tan \theta=-\frac{3}{4} in quadrant II.

See Solution

Problem 660

Find the exact values of sinθ\sin \theta and cosθ\cos \theta if tanθ=34\tan \theta = -\frac{3}{4} in quadrant II.

See Solution

Problem 661

Find the other trigonometric functions of θ\theta if tanθ=34\tan \theta=-\frac{3}{4} in quadrant II.

See Solution

Problem 662

Find all trigonometric functions for θ\theta if tanθ=34\tan \theta=-\frac{3}{4} in quadrant II.

See Solution

Problem 663

Find sinθ\sin \theta given cscθ=1176\csc \theta = \frac{\sqrt{117}}{6}. Simplify your answer.

See Solution

Problem 664

Find sinθ\sin \theta given cscθ=184\csc \theta = \frac{\sqrt{18}}{4}. Simplify and rationalize if needed.

See Solution

Problem 665

Find sinθ\sin \theta given cscθ=442\csc \theta = \frac{\sqrt{44}}{2}. Simplify your answer.

See Solution

Problem 666

Find (a) the complement and (b) the supplement of an angle measuring 171517^{\circ} 15^{\prime}.

See Solution

Problem 667

Find cscθ\csc \theta if cotθ=16\cot \theta = -\frac{1}{6} and θ\theta is in quadrant IV.

See Solution

Problem 668

A boat is 150 m from a lighthouse's base with a 3434^{\circ} elevation angle. Find the boat's distance from the cliff.

See Solution

Problem 669

1. A boat sees a lighthouse foot at 3434^{\circ} elevation; cliff height is 150 m. Find the boat's distance from the cliff base.
2. Flying at 037037^{\circ}, turn left 4545^{\circ}. What is the new heading?

See Solution

Problem 670

Find the equation of the function when y=sinθy=\sin \theta is stretched by 32\frac{3}{2}, reflected in the yy axis, and shifted up 3 units.

See Solution

Problem 671

Find IJ.
Write your answer as an integer or as a decimal rounded to the nearest tenth. IJ = \square

See Solution

Problem 672

Find the amplitude and period for 1/4sin(πx)-1 / 4 \sin (\pi x)

See Solution

Problem 673

Find the reference angle for 192 degrees.

See Solution

Problem 674

1) cosθ×tanθ=sinθ\cos \theta \times \tan \theta=\sin \theta

See Solution

Problem 675

2 Using the triangle below, find the exact value of the given trig functions. sin(θ2)=±\sin \left(\frac{\theta}{2}\right)= \pm \square cos(θ2)=±\cos \left(\frac{\theta}{2}\right)= \pm \square tan(θ2)=±\tan \left(\frac{\theta}{2}\right)= \pm \square

See Solution

Problem 676

Question 4 (1 point) Determine the corresponding reciprocal ratio that corresponds to cosθ=0.8\cos \theta=0.8. secθ=12\sec \theta=\frac{1}{2} secθ=54\sec \theta=\frac{5}{4} secθ=2\sec \theta=2 secθ=45\sec \theta=\frac{4}{5}

See Solution

Problem 677

Managed bookmarks Garage Open Back... Visit Website
Pre-Calculus A Unit Test Unit Test Active 1 4 5 6 7 8 9 10 \square TIME REMAINING 03:31:58
Which shows all the exact solutions of 2sec2xtan4x=12 \sec ^{2} x-\tan ^{4} x=-1 ? Give your answer in radians. π3+kπ\frac{\pi}{3}+k \pi and 2π3+kπ\frac{2 \pi}{3}+k \pi π3+2kπ\frac{\pi}{3}+2 k \pi and 5π3+2kπ\frac{5 \pi}{3}+2 k \pi π4+2kπ,3π4+2kπ,5π4+2kπ\frac{\pi}{4}+2 k \pi, \frac{3 \pi}{4}+2 k \pi, \frac{5 \pi}{4}+2 k \pi, and 7π4+2kπ\frac{7 \pi}{4}+2 k \pi π3+kπ,2π3+kπ,4π3+kπ\frac{\pi}{3}+k \pi, \frac{2 \pi}{3}+k \pi, \frac{4 \pi}{3}+k \pi, and 5π3+kπ\frac{5 \pi}{3}+k \pi

See Solution

Problem 678

Unit Test Unit Test Active 1 3 4 5 6 7 8 9 10 TIME REMAINING 03:30:59
An object is attached to a spring that is stretched and released. The equation d=8cos(π6t)d=-8 \cos \left(\frac{\pi}{6} t\right) models the distance, dd, of the object in inches above or below the rest position as a function of time, tt, in seconds. Approximately when will the object be 6 inches above the rest position? Round to the nearest hundredth, if necessary. 0 seconds 1.38 seconds 4.62 seconds 8 seconds

See Solution

Problem 679

Q. 4 Trigonometric ratios in similar right triangles 7×77 \times 7
Find the sine of V\angle V. Submit

See Solution

Problem 680

1 3 4 5 5 1 8 (3) 10
Solve: cos(x+π)=12\cos (x+\pi)=\frac{1}{2} over the interval [π2,π]\left[\frac{\pi}{2}, \pi\right] π2\frac{\pi}{2} 2π3\frac{2 \pi}{3} 3π4\frac{3 \pi}{4} 5π6\frac{5 \pi}{6}

See Solution

Problem 681

1 \square 3 4 5 6 1 13 y 10 \square
Let cos(2x)cos(x)+sin(x)=0\frac{\cos (2 x)}{\cos (x)+\sin (x)}=0 where 0x1800^{\circ} \leq x \leq 180^{\circ}. What are the possible values for xx ? 4545^{\circ} only 135135^{\circ} only 4545^{\circ} or 225225^{\circ} 135135^{\circ} or 315315^{\circ}

See Solution

Problem 682

Unit Test Unit Test Active
1 3 4 5 6 7 8 9 10 \square
For 0x<3600^{\circ} \leq x<360^{\circ}, what are the solutions to cos(x2)sin(x)=0\cos \left(\frac{x}{2}\right)-\sin (x)=0 ? {0,60,300}\left\{0^{\circ}, 60^{\circ}, 300^{\circ}\right\} {0,120,240}\left\{0^{\circ}, 120^{\circ}, 240^{\circ}\right\} {60,180,300}\left\{60^{\circ}, 180^{\circ}, 300^{\circ}\right\} {120,180,240}\left\{120^{\circ}, 180^{\circ}, 240^{\circ}\right\}

See Solution

Problem 683

9) tan4k+tan2k=sec4ksec2k\tan ^{4} k+\tan ^{2} k=\sec ^{4} k-\sec ^{2} k

See Solution

Problem 684

Suppose that tanα=34,cosα<0\tan \alpha=\frac{3}{4}, \cos \alpha<0 and cosβ=13,3π2<β<2π\cos \beta=\frac{1}{3}, \frac{3 \pi}{2}<\beta<2 \pi.
Find cos(2α)\cos (2 \alpha)

See Solution

Problem 685

What is the range of y=sec1(x)?y=\sec ^{-1}(x) ? [π2,0)\left[-\frac{\pi}{2}, 0\right) and (0,π2]\left(0, \frac{\pi}{2}\right] [π2,0]\left[-\frac{\pi}{2}, 0\right] and [0,π2]\left[0, \frac{\pi}{2}\right] [0,π2)\left[0, \frac{\pi}{2}\right) and (π2,π]\left(\frac{\pi}{2}, \pi\right] [0,π2]\left[0, \frac{\pi}{2}\right] and [π2,π]\left[\frac{\pi}{2}, \pi\right]

See Solution

Problem 686

Given: cos(3x180)=32\cos \left(3 x-180^{\circ}\right)=-\frac{\sqrt{3}}{2}, where 0x<1800 \leq x<180^{\circ} Which values represent the solutions to the equation? {10,110,130}\left\{10^{\circ}, 110^{\circ}, 130^{\circ}\right\} {20,100,140}\left\{20^{\circ}, 100^{\circ}, 140^{\circ}\right\} {30,330,390}\left\{30^{\circ}, 330^{\circ}, 390^{\circ}\right\} {60,300,420}\left\{60^{\circ}, 300^{\circ}, 420^{\circ}\right\}

See Solution

Problem 687

4. Determine the exact value of each trigonometric expression. a) sin30×tan60cos30\sin 30^{\circ} \times \tan 60^{\circ}-\cos 30^{\circ} c) tan230cos245\tan ^{2} 30^{\circ}-\cos ^{2} 45^{\circ} b) 2cos45×sin452 \cos 45^{\circ} \times \sin 45^{\circ} d) 1sin45cos451-\frac{\sin 45^{\circ}}{\cos 45^{\circ}}
5. Using exact values, show that sin2θ+cos2θ=1\sin ^{2} \theta+\cos ^{2} \theta=1 for each angle. a) θ=30\theta=30^{\circ} b) θ=45\theta=45^{\circ} c) θ=60\theta=60^{\circ}
6. Using exact values, show that sinθcosθ=tanθ\frac{\sin \theta}{\cos \theta}=\tan \theta for each angle. a) θ=30\theta=30^{\circ} b) θ=45\theta=45^{\circ} c) θ=60\theta=60^{\circ}

See Solution

Problem 688

Sketch the graph of the function. f(x)=arctan(4x)f(x)=\arctan (4 x)
Compare the graph to the graph of the parent inverse trigonometric function. The graph of f(x)f(x) is arctan(x)\arctan (x) with a ---Select--- \square Read It

See Solution

Problem 689

4) Determine the values of sin2θ,cos2θ\sin 2 \theta, \cos 2 \theta, and tan2θ\tan 2 \theta, given cosθ=35\cos \theta=\frac{3}{5} and 0θπ20 \leq \theta \leq \frac{\pi}{2}

See Solution

Problem 690

Express each of the following as a single trigonometric ratio. a) 2sin5xcos5x2 \sin 5 x \cos 5 x d) 2tan4x1tan24x\frac{2 \tan 4 x}{1-\tan ^{2} 4 x} b) cos2θsin2θ\cos ^{2} \theta-\sin ^{2} \theta e) 4sinθcosθ4 \sin ^{\prime} \theta \cos \theta c) 12sin23x1-2 \sin ^{2} 3 x f) 2cos2θ212 \cos ^{2} \frac{\theta}{2}-1

See Solution

Problem 691

The period, to the nearest tenth, of the function y=sin0.25xy=\sin 0.25 x, where xx is in radians, is

See Solution

Problem 692

1. Determine the equation of the graph below in the form: a) y=asin(xc)y=a \sin (x-c) if a<0a<0 and there is a minimum possible horizontal phase shift. y=asin(xc)y=4sin(xπ)\begin{array}{l} y=a \sin (x-c) \\ y=-4 \sin (x-\pi) \end{array} b) y=acos(xc)y=a \cos (x-c) if a>0a>0 and there is a minimum possible horizontal phase shift. y=acos(xc)y=4cos(\begin{array}{l} y=a \cos (x-c) \\ y=4 \cos ( \end{array}

See Solution

Problem 693

The cosine graph shown has a range [3,9][-3,9]. The graph has an equation in the form y=acos[b(xc)]+d,a>0y=a \cos [b(x-c)]+d, a>0. Determine the equation if the graph has a minimum possible phase shift. max =9=9 min =5=-5 y=acos[b(xc)]+da=maxmin2d=max+min2a=4(3)2d=9+(3)2a=6a=3\begin{array}{l} y=a \cos [b(x-c)]+d \\ a=\frac{\max -\min }{2} \quad d=\frac{m_{a x}+\min }{2} \\ a=\frac{4-(-3)}{2} \quad d=\frac{9+(-3)}{2} \\ a=6 \\ a=3 \end{array} y=6cos[b(xc)]+3y=6 \cos [b(x-c)]+3

See Solution

Problem 694

Question 13
Use Identities to find the exact value. cos(19π12)\cos \left(\frac{19 \pi}{12}\right) (A) 624\frac{\sqrt{6}-\sqrt{2}}{4} (B) 26\sqrt{2}-\sqrt{6} (C) 264\frac{\sqrt{2}-\sqrt{6}}{4} (D) 62-\sqrt{6}-\sqrt{2}

See Solution

Problem 695

16) seccos12\sec \cos ^{-1}-\sqrt{2}

See Solution

Problem 696

cos1(2/2)\cos ^{-1}(\sqrt{2} / 2)

See Solution

Problem 697

Είναι μια κ μου Sin a + Cas also Sin'a + CosFa=k_1

See Solution

Problem 698

\text{هرگاه } x \text{ باشد، بیشترین مقدار } \tan x + \cot x \text{ کدام است؟}

See Solution

Problem 699

Ground Level [Ground level will be from the point where the canon was shot out from Δy=0\Delta y=0 ]. 1) Set the cannon to have an initial speed of 20 m/s20 \mathrm{~m} / \mathrm{s}. For which situation do you think the cannon ball will go father: if it is set at a 25-degree angle, or if it is set at a 35-degree angle? (1 pt) Hypothesis: Concluslons: 2) Set the cannon to have an initial speed of 20 m/s20 \mathrm{~m} / \mathrm{s}. For which situation do you think the cannon ball will go father: if it Is set at a 60-degree angle, or if it is set at a 70-degree angle? (1 pt) Hypothesis: Conclusions: 3) Set the cannon to have an initial speed of 15 m/s15 \mathrm{~m} / \mathrm{s}. For which situation do you think the cannon ball will go the highest: If it is set at a 25-degree angle, or if it is set at a 35-degree angle? (1 pt) Hypothesis: Concluslons: 4) Set the cannon to have an initial speed of 15 m/s15 \mathrm{~m} / \mathrm{s}. For which situation do you think the cannon ball will go highest: If It is set at a 60-degree angle, or if it is set at a 70 -degree angle? (1 pt) Hypothesis: Conclusions: 5) Set the cannon to have an initial speed of 25 m/s25 \mathrm{~m} / \mathrm{s}. For which situation do you think the cannon ball will be in the alr for the longest time: if it is set at a 25-degree angle, or If it is set at a 35-degree angle? (1 pt) Hypothes/s: Conclusions: 6) Set the cannon to have an initial speed of 15 m/s15 \mathrm{~m} / \mathrm{s}. For which situation do you think the cannon ball will be in the air for the longest time: if it is set at a 60-degree angle, or If it is set at a 70 -degree angle? (1 pt) Hypothesis: Conclusions:

See Solution

Problem 700

Besar sudut 301230^{\circ} 12 - dalam satuan radian adalah (A) 151900πrad\frac{151}{900} \pi \mathrm{rad}. (B) 152900πrad\frac{152}{900} \pi \mathrm{rad}. (C) 153900πrad\frac{153}{900} \pi \mathrm{rad}. (D) 154900πrad\frac{154}{900} \pi \mathrm{rad}. (E) 155900πrad\frac{155}{900} \pi \mathrm{rad}.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord