Math  /  Trigonometry

Question\text{هرگاه } x \text{ باشد، بیشترین مقدار } \tan x + \cot x \text{ کدام است؟}

Studdy Solution
Evaluate 1sinxcosx \frac{1}{\sin x \cos x} at the critical points:
For x=π4 x = \frac{\pi}{4} :
sinx=cosx=22 \sin x = \cos x = \frac{\sqrt{2}}{2}
sinxcosx=(22)2=12 \sin x \cos x = \left(\frac{\sqrt{2}}{2}\right)^2 = \frac{1}{2}
Thus,
1sinxcosx=112=2 \frac{1}{\sin x \cos x} = \frac{1}{\frac{1}{2}} = 2
The maximum value of tanx+cotx \tan x + \cot x is:
2 \boxed{2}

View Full Solution - Free
Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord