Math  /  Geometry

QuestionGiven: ABCDA B C D is a parallelogram. Diagonals AC,BD\overline{\mathrm{AC}}, \overline{\mathrm{BD}} intersect at E . Prove: AECE\overline{\mathrm{AE}} \cong \overline{\mathrm{CE}} and BEDE\overline{\mathrm{BE}} \cong \overline{\mathrm{DE}} Statements
1. ABCD is a parallelogram
2. ABCD\overline{\mathrm{AB}} \| \overline{\mathrm{CD}}
3. BAE\angle \mathrm{BAE} and DCE\angle \mathrm{DCE} are alt. interior angles

Reasons
1. given
2. def. of parallelogram
3. def. of alt. interior angles

CorrectIAssemble the next statement. Intro

Studdy Solution
Conclude the diagonals bisect each other:
- Since ABECDE\triangle ABE \cong \triangle CDE, AECE\overline{AE} \cong \overline{CE} and BEDE\overline{BE} \cong \overline{DE}.
The diagonals of parallelogram ABCDABCD bisect each other, proving AECE\overline{AE} \cong \overline{CE} and BEDE\overline{BE} \cong \overline{DE}.

View Full Solution - Free
Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord