Calculus

Problem 501

Given the function f(x)=3sin(4+3x3)f(x)=-3 \sin \left(\sqrt{4+3 x^{3}}\right), find f(x)f^{\prime}(x).
Answer Attempt 1 out of 2 f(x)=f^{\prime}(x)= Subnuit Answer

See Solution

Problem 502

Given the function h(x)=16x3sin2(x)h(x)=\frac{\sqrt{1-6 x^{3}}}{\sin ^{2}(x)}, find h(x)h^{\prime}(x) in any form. Note: make sure to write trig functions using parentheses like sin2(x)\sin ^{2}(x) instead of sin2x\sin ^{2} x, otherwise expression.
Answer Attempt i out of 2 h(x)=h^{\prime}(x)= \square Submit Answer

See Solution

Problem 503

25 Dans chaque cas, ff est une fonction définie et dérivable sur un intervalle I de courbe représentative CfC_{f} dans un repère. Déterminer une équation de la tangente T à CfC_{f} au point d'abscisse aa.
1. f(x)=x3f(x)=x^{3} et a=2a=-2
3. f(x)=xf(x)=\sqrt{x} et a=2a=2
2. f(x)=1xf(x)=\frac{1}{x} et a=1a=-1

Pour les exercices 26 à 30 Soit ff une fonction définie sur un ensemble I . Préciser son ensemble de dérivabilité Df\mathrm{D}_{f^{\prime}} et déterminer sa dérivée ff^{\prime}.
26 1. f(x)=x3+x2;I=Rf(x)=x^{3}+x^{2} ; \mathrm{I}=\mathbb{R}
2. f(x)=x3x2x1;I=Rf(x)=x^{3}-x^{2}-x-1 ; I=\mathbb{R}
3. f(x)=x+x;I=[0;+[f(x)=\sqrt{x}+x ; \mathrm{I}=[0 ;+\infty[
4. f(x)=x21x;I=Rf(x)=x^{2}-\frac{1}{x} ; I=\mathbb{R}^{*}
27. 1. f(x)=3x24x+3;I=Rf(x)=3 x^{2}-4 x+3 ; \mathrm{I}=\mathbb{R}
2. f(x)=4x4+3x32x2+x;I=Rf(x)=-4 x^{4}+3 x^{3}-2 x^{2}+x ; \mathrm{I}=\mathbb{R}
3. f(x)=x32x2+3x4;I=Rf(x)=x^{3}-2 x^{2}+3 x-4 ; I=\mathbb{R}

See Solution

Problem 504

1. x3y+xy3=8xyx^{3} y+x y^{3}=-8 x y

See Solution

Problem 505

50 [chercher.]
On donne I=[2;12]\mathrm{I}=\left[-2 ; \frac{1}{2}\right] et a=0a=0. Sachant que T passe par A et par le point B(12;2)\mathrm{B}\left(\frac{1}{2} ; 2\right), calculer f(a)f^{\prime}(a).

See Solution

Problem 506

Car AA is traveling westat 80 km/h80 \mathrm{~km} / \mathrm{h} and car B is traveling north at 100 km/h100 \mathrm{~km} / \mathrm{h}. Both are headed for the intersection of the roads. At what rate are the cars approaching each other when car AA is 0.3 km and car B is 0.4 km from the intersection? Solution: Animation: Figure 3.9.004.

See Solution

Problem 507

Question Watch Video Show Examples
Given the function f(x)=5x2x33f(x)=-\frac{5 \sqrt{x}}{2}-\frac{\sqrt{x^{3}}}{3}, find f(4)f^{\prime}(4). Express your answer as a single fraction in simplest form.
Answer Attempt 1 out of 10 f(4)=f^{\prime}(4)= \square Submit Answer \sqrt{ } n\sqrt[n]{ }

See Solution

Problem 508

Question Watch Video Show
Given the function f(x)=(6+2x3)(x2+8x1+10)f(x)=\left(-6+2 x^{-3}\right)\left(x^{2}+8 x^{-1}+10\right), fin in any form.
Answer Attempt 1 out of 10 f(x)=f^{\prime}(x)= \square Submit

See Solution

Problem 509

Consider the function f(x)=7xf(x)=7-|x| defined on [7,7][-7,7]. (a) Compute the left Riemann sum L5L_{5}. L5=L_{5}= \square help (numbers) (b) Compute the right Riemann sum R5R_{5}. R5=R_{5}= \square help (numbers) (c) Compute the average value of L5L_{5} and R5R_{5}.
Average value == \square help (numbers) (d) Compute the area under the graph of f .
Area == \square help (numbers) (e) Compare the two values found in (c) and (d).
The average value is \square the area.

See Solution

Problem 510

(a) Find the Riemann sum for f(x)=x2sin(2x),0x3f(x)=x-2 \sin (2 x), 0 \leq x \leq 3, with six terms, taking the sample points to be right endpoints. Give your answer correct to six decimal points. R6=R_{6}= (b) Repeat (a) with midpoints as the sample points. M6=M_{6}=

See Solution

Problem 511

Given the function f(x)=cos(πx)f(x)=\cos (\pi x), compute the right-endpoint (Riemann) sum using n=3n=3 on the interval [0,1][0,1]. R3=R_{3}= help (numbers)

See Solution

Problem 512

In this problem you will calculate the area between f(x)=6x3f(x)=6 x^{3} and the xx-axis over the interval [0,2][0,2] using a limit of right-endpoint Riemann sums:  Area =limn(k=1nf(xk)Δx)\text { Area }=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} f\left(x_{k}\right) \Delta x\right)
Express the following quantities in terms of nn, the number of rectangles in the Riemann sum, and kk, the index for the rectangles in the Riemann sum. a. We start by subdividing [0,2][0,2] into nn equal width subintervals [x0,x1],[x1,x2],,[xn1,xn]\left[x_{0}, x_{1}\right],\left[x_{1}, x_{2}\right], \ldots,\left[x_{n-1}, x_{n}\right] each of width Δx\Delta x. Express the width of each subinterval Δx\Delta x in terms of the number of subintervals nn. Δx=\Delta x=\square b. Find the right endpoints x1,x2,x3x_{1}, x_{2}, x_{3} of the first, second, and third subintervals [x0,x1],[x1,x2],[x2,x3]\left[x_{0}, x_{1}\right],\left[x_{1}, x_{2}\right],\left[x_{2}, x_{3}\right] and express your answers in terms of nn. x1,x2,x3= (Enter a comma separated list.) x_{1}, x_{2}, x_{3}=\square \text { (Enter a comma separated list.) } c. Find a general expression for the right endpoint xkx_{k} of the kk th subinterval [xk1,xk}\left[x_{k-1}, x_{k}\right\}, where 1kn1 \leq k \leq n. Express your answer in terms of kk and nn. xk=x_{k}= \square d. Find f(xk)f\left(x_{k}\right) in terms of kk and nn. f(xk)=f\left(x_{k}\right)= \square e. Find f(xk)Δxf\left(x_{k}\right) \Delta x in terms of kk and nn. f(xk)Δx=f\left(x_{k}\right) \Delta x= \square f. Find the value of the right-endpoint Riemann sum in terms of nn. k=1nf(xk)Δx=\sum_{k=1}^{n} f\left(x_{k}\right) \Delta x= \square g. Find the limit of the right-endpoint Riemann sum. limn(k=1nf(xk)Δx)=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} f\left(x_{k}\right) \Delta x\right)= \square

See Solution

Problem 513

Find the function f(x)f(x) described by the given initial value problem. f(x)=2sinx,f(π)=2,f(π)=4f(x)=\begin{array}{l} f^{\prime \prime}(x)=2 \sin x, \quad f^{\prime}(\pi)=2, \quad f(\pi)=4 \\ f(x)=\square \end{array}

See Solution

Problem 514

Consider the function f(x)f(x) whose second derivative is f(x)=5x+8sin(x)f^{\prime \prime}(x)=5 x+8 \sin (x). If f(0)=4f(0)=4 and f(0)=4f^{\prime}(0)=4, what is f(x)f(x) ? f(x)=f(x)=

See Solution

Problem 515

Find L1{3s2+4(s2)2+7s+5}L^{-1}\left\{\frac{-3}{s-2}+\frac{4}{(s-2)^{2}}+\frac{7}{s+5}\right\}

See Solution

Problem 516

Find L1{1s8+1s5+1s2}L^{-1}\left\{\frac{1}{s^{8}}+\frac{1}{s^{5}}+\frac{1}{s^{2}}\right\}

See Solution

Problem 517

Find the general indefinite integral. Use an upper-case CC for any arbitrary constants. 7z3+4z2+3z1dz=\int 7 z^{-3}+4 z^{-2}+3 z^{-1} d z= \square

See Solution

Problem 518

Find the general indefinite integral. Use an upper-case CC for any arbitrary constants. (6t)(7+t2)dt=\int(6-t)\left(-7+t^{2}\right) d t= \square

See Solution

Problem 519

Find L1{1s2+2s+37}L^{-1}\left\{\frac{1}{s^{2}+2 s+37}\right\}

See Solution

Problem 520

Find the general indefinite integral. Use an upper-case CC for any arbitrary constants. (x5+5+5x2+1)dx=\int\left(x^{5}+5+\frac{5}{x^{2}+1}\right) d x= \square

See Solution

Problem 521

Find the most general antiderivative of the function g(u)=5u53u26g(u)=5 u^{5}-3 u^{2}-6. Use an upper-case CC for any arbitrary constants. G(u)=G(u)=

See Solution

Problem 522

Find ff if f(x)=5+9xf^{\prime}(x)=-5+9 x and f(0)=2f(0)=2. f(x)=f(x)=

See Solution

Problem 524

[0/7 Points] DETAILS MY NOTES
Find the critical numbers of the function. (Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.) g(x)=16x23g(x)=\sqrt[3]{16-x^{2}}

See Solution

Problem 525

Find limx3x2x6x3\lim _{x \rightarrow 3} \frac{x^{2}-x-6}{x-3}

See Solution

Problem 526

Example 6: (self-study) Find the abs. max and abs. min\min values of ff on the given interval f(x)=x33x2+1,[12,4]f(x)=x^{3}-3 x^{2}+1, \quad\left[-\frac{1}{2}, 4\right] Solution:

See Solution

Problem 527

Find the most general antiderivative of the function f(t)=4cos(t)10sin(t)f(t)=-4 \cos (t)-10 \sin (t). Use an upper-case CC for any arbitrary constants. F(t)=F(t)=

See Solution

Problem 528

Find limx0+(cotx)x\lim _{x \rightarrow 0^{+}}(\cot x)^{x}

See Solution

Problem 529

Find the family of antiderivatives of the function f(x)=8.5x7F(x)=\begin{array}{l} f(x)=\frac{8.5}{\sqrt{x^{7}}} \\ F(x)= \end{array}

See Solution

Problem 530

Consider the function f(x)=7x48x6f(x)=\frac{7}{x^{4}}-\frac{8}{x^{6}}. Let F(x)F(x) be the antiderivative of f(x)f(x) with F(1)=0F(1)=0. Compute F(2)F(2). F(2)=F(2)= \square Submit answer Next item wers Attempt 2 of 2

See Solution

Problem 531

Math 2211 Classwork over 4.1 and 4.3
1. (10 points) Consider f(x)=x46x2f(x)=x^{4}-6 x^{2}. (a) Find the critical numbers of the function. (b) Find the intervals on which ff is increasing or decreasing. (c) Find the local maximum and minimum values of ff. (d) Find the inflection points. (e) Find the intervals of concavity.

See Solution

Problem 532

Find ff. f(x)=f(x)=\square

See Solution

Problem 533

Differentiate implicitly to find d2ydx2\frac{d^{2} y}{d x^{2}}. 3x3y3=5d2ydx2=\begin{array}{l} 3 x^{3}-y^{3}=5 \\ \frac{d^{2} y}{d x^{2}}=\square \end{array}

See Solution

Problem 534

For the demand function q=D(p)=367pq=D(p)=367-p, find the following. a) The elasticity b) The elasticity at p=111\mathrm{p}=111, stating whether the demand is elastic, inelastic or has unit elasticity c) The value(s) of pp for which total revenue is a maximum (assume that pp is in dollars) a) Find the equation for elasticity. E(p)=E(p)= \square b) Find the elasticity at the given price, stating whether the demand is elastic, inelastic or has unit elasticity. E(111)=E(111)= \square (Simplify your answer. Type an integer or a fraction.)
Is the demand elastic, inelastic, or does it have unit elasticity? elastic inelastic unit elasticity c) Find the value(s) of pp for which total revenue is a maximum (assume that pp is in dollars). $\$ \square

See Solution

Problem 535

Differentiate implicitly to find dydx\frac{d y}{d x}. Then find the slope of the curve at the given point. 2x2+3xy+6y2+13y8=0;(2,0)dydx=\begin{array}{l} 2 x^{2}+3 x y+6 y^{2}+13 y-8=0 ; \quad(-2,0) \\ \frac{d y}{d x}=\square \end{array} \square

See Solution

Problem 536

(1 point) a. Find the Laplace transform F(s)=L{f(t)}F(s)=\mathcal{L}\{f(t)\} of the function f(t)=9+sin(8t)f(t)=9+\sin (8 t), defined on the interval t0t \geq 0. F(s)=L{9+sin(8t)}=F(s)=\mathcal{L}\{9+\sin (8 t)\}= \square help (formulas) b. For what values of ss does the Laplace transform exist? \square help (inequalities)
Note: You can earn partial credit on this problem.

See Solution

Problem 537

Standard 16: Problem 4 (1 point) a. Find the Laplace transform F(s)=L{f(t)}F(s)=\mathcal{L}\{f(t)\} of the function f(t)=2e9t+3t+6e10tf(t)=2 e^{-9 t}+3 t+6 e^{10 t}, defined on the interval t0t \geq 0. F(s)=L{2e9t+3t+6e10t}=F(s)=\mathcal{L}\left\{2 e^{-9 t}+3 t+6 e^{10 t}\right\}= \square help (formulas) b. For what values of ss does the Laplace transform exist? \square help (inequalities)
Note: You can earn partial credit on this problem.

See Solution

Problem 538

A garden shop determines the demand function q=D(x)=4x+30010x+11q=D(x)=\frac{4 x+300}{10 x+11} during early summer for tomato plants where qq is the number of plants sold per day when the price is xx dollars per plant. (a) Find the elasticity. (b) Find the elasticity when x=2x=2. (c) At $2\$ 2 per plant, will a small increase in price cause the total revenue to increase or decrease? (a) The elasticity is \square (b) When x=2x=2, the elasticity is \square (Simplify your answer. Type an integer or a fraction) (c) Fill in the blank below.
At $2\$ 2 per plant, a small increase in price will cause the total revenue to \square

See Solution

Problem 539

(1 point) a. Set up an integral for finding the Laplace transform of the following function: f(t)={0,0t<6t3,6t.f(t)=\left\{\begin{array}{ll} 0, & 0 \leq t<6 \\ t-3, & 6 \leq t . \end{array}\right. F(s)=L{f(t)}=ABF(s)=\mathcal{L}\{f(t)\}=\int_{A}^{B} \square help (formulas) where A=A= \square and B=B= \square b. Find the antiderivative (with constant term 0 ) corresponding to the previous part. \square c. Evaluate appropriate limits to compute the Laplace transform of f(t)f(t) : F(s)=L{f(t)}=F(s)=\mathcal{L}\{f(t)\}= \square d. Where does the Laplace transform you found exist? In other words, what is the domain of F(s)F(s) ? \square help (inequalities)

See Solution

Problem 540

Previous Problem Problem List Next Problem
Standard 16: Problem 6 (1 point)
Find the Laplace transform of 5cos(at)2emt5 \cos (a t)-2 e^{m t} : \square
Preview My Answers Submit Answers You have attempted this problem 0 times. You have unlimited attempts remaining.

See Solution

Problem 541

(1 point)
Find the inverse Laplace transform f(t)=L1{F(s)}f(t)=\mathcal{L}^{-1}\{F(s)\} of the function F(s)=1s+5040s7F(s)=\frac{1}{s}+\frac{5040}{s^{7}}. f(t)=L1{1s+5040s7}=f(t)=\mathcal{L}^{-1}\left\{\frac{1}{s}+\frac{5040}{s^{7}}\right\}= \square help (formulas)
Preview My Answers Submit Answers
You have attempted this problem 0 times. You have unlimited attempts remaining.
Email Instructor

See Solution

Problem 542

Previous Problem Problem List Next Problem
Standard 17: Problem 3 (1 point)
Find the inverse Laplace transform f(t)=L1{F(s)}f(t)=\mathcal{L}^{-1}\{F(s)\} of the function F(s)=(1s2+36+8ss2+81)F(s)=-\left(\frac{1}{s^{2}+36}+\frac{8 s}{s^{2}+81}\right). f(t)=L1{(1s2+36+8ss2+81)}=f(t)=\mathcal{L}^{-1}\left\{-\left(\frac{1}{s^{2}+36}+\frac{8 s}{s^{2}+81}\right)\right\}=\square help (formulas)
Preview My Answers Submit Answers You have attempted this problem 0 times. You have unlimited attempts remainina.

See Solution

Problem 543

(1 point)
Consider the function F(s)=4s10s25s+4F(s)=\frac{4 s-10}{s^{2}-5 s+4}. a. Find the partial fraction decomposition of F(s)F(s) : 4s10s25s+4=+\frac{4 s-10}{s^{2}-5 s+4}=\square+\square b. Find the inverse Laplace transform of F(s)F(s). f(t)=L1{F(s)}=f(t)=\mathcal{L}^{-1}\{F(s)\}= \square help (formulas)

See Solution

Problem 544

Differentiate implicitly to find dydx\frac{d y}{d x}. Then find the slope of the curve at the given point. y2x3=22;(3,7)dydx=\begin{array}{l} y^{2}-x^{3}=22 ; \quad(3,-7) \\ \frac{d y}{d x}=\square \end{array}
The slope of the graph at the given point is \square (Type an integer or a simplified fraction.)

See Solution

Problem 545

Standard 17: Problem 6 (1 point)
Find the inverse Laplace transform f(t)=L1{F(s)}f(t)=\mathcal{L}^{-1}\{F(s)\} of the function F(s)=6s23s28s+20F(s)=\frac{6 s-23}{s^{2}-8 s+20}. f(t)=L1{6s23s28s+20}=f(t)=\mathcal{L}^{-1}\left\{\frac{6 s-23}{s^{2}-8 s+20}\right\}= \square help (formulas) Preview My Answers Submit Answers
You have attempted this problem 0 times. You have unlimited attempts remaining.

See Solution

Problem 546

An open-top box is to be made from a 12 -inch by 42 -inch piece of plastic by removing a square from each corner of the plastic and folding up the flaps on each side. What should be the length of the side xx of the square cut out of each corner to get a box with the maximum volume? You may enter an exact answer or round to the nearest hundredth.

See Solution

Problem 547

3. Antiderivatives and initial value problems (a) Let f(x)=5f^{\prime \prime}(x)=-5 i. Find f(x)dx\int f^{\prime \prime}(x) d x. ii. Find f(x)f^{\prime}(x) and f(x)f(x) given that f(1)=2f^{\prime}(1)=2 and f(1)=8f(1)=8. (b) Suppose you are driving at 12 meters /sec/ \mathrm{sec}. You see a turtle ahead, so you slam on the breaks, bringing your car to a complete stop in just 6 meters. Let's figure out what constant deceleration was needed to make this happen: i. Assume the constant acceleration is a(t)=ka(t)=-k (negative becuase the car is slowing down). At the start of the problem you were driving at 12 m/s12 \mathrm{~m} / \mathrm{s}, so the initial condition is v(0)=12v(0)=12. Use this information to find the velocity function v(t)v(t). (Your answer will involve kk.) ii. Find the position function s(t)s(t) given the initial condition s(0)=0s(0)=0. (Your answer will still involve kk.) iii. Use the function v(t)v(t) that you found above to determine the time tt at which the cal came to a stop. iv. Use the function s(t)s(t) that you found above to find kk. (Hint: s=6s=6 at the time wher the car came to a stop.) What constant deceleration did you use to make the car stop

See Solution

Problem 548

Part 1 of 3 HW Score: 61.11%,1161.11 \%, 11 of 18 points Points: 0 of 1
The growth rate of a fungus vari L(t)=2.4t+0.75cos(2πt24)L(t)=2.4 t+0.75 \cos \left(\frac{2 \pi t}{24}\right) (a) Calculate the growth rate dLdt\frac{\mathrm{dL}}{\mathrm{dt}}. (b) What is the largest growth rate of the microbe? What is the smallest growth rate? (a) Calculate the growth rate. dLdt=\frac{\mathrm{dL}}{\mathrm{dt}}=\square
Type an exact answer using π\pi as needed.)

See Solution

Problem 549

Compute the following derivatives using the formulas below. m=ddx(5x)x=01.609dyx=m5x\begin{array}{l} m=\left.\frac{d}{d x}\left(5^{x}\right)\right|_{x=0} \approx 1.609 \\ \frac{d}{y^{x}}=m 5^{x} \end{array} (b) ddx(5x)x=4\left.\frac{d}{d x}\left(5^{x}\right)\right|_{x=-4} \approx \square (Round to two decimal places as needed.)

See Solution

Problem 550

Differentiate the following function. f(x)=e5x2+9xddx(e5x2+9x)=\begin{array}{c} f(x)=e^{5 x^{2}+9 x} \\ \frac{d}{d x}\left(e^{5 x^{2}+9 x}\right)= \end{array} \square

See Solution

Problem 551

Given the definite integral 12(18x3)dx\int_{1}^{2}\left(1-\frac{8}{x^{3}}\right) d x : (a) The value of the definite integral is \square . (b) The area of the region bounded by the xx-axis, the graph of the function, and the lines x=1x=1 and x=2x=2 is \square

See Solution

Problem 552

A driver accelerates when the car is traveling at a speed of 30 miles per hour (1.e., 44 feet per second). The velocity (in feet per second) function is v(t)=44+2.2tv(t)=44+2.2 t. (a) The car reaches the speed of 60 miles per hour (1.e., 88 feet per second) in \square seconds. (a) Using a definite integral, it is determined that from the time the driver hits the gas pedal to the time the car reaches the speed of 60 miles per hour, the car has traveled \square feet.

See Solution

Problem 553

Given y=sec(x)y=\sec (x), find dydx\frac{d y}{d x}.
Answer Attempt 1 out of 2 dydx=\frac{d y}{d x}= \square Submit Answer

See Solution

Problem 554

Use the Fundamental Theorem of Calculus to find f(x)f^{\prime}(x), where f(x)=4xt3+64dtf(x)=\begin{array}{r} f(x)=\int_{-4}^{x} \sqrt{t^{3}+64} d t \\ f^{\prime}(x)=\square \end{array}

See Solution

Problem 555

1,2,3,4,51,2,3,4,5, and 6 Specify whether each system is autonomous or nonautonomous, and whether it is linear or nonlinear. If it is linear, specify whether it is homogeneous or nonhomogeneous.
1. dx/dt=xy,dy/dt=3ty+xd x / d t=x-y, \quad d y / d t=-3 t y+x

HIDE ANSWER Answer: Linear, homogeneous, nonautonomous
2. dy/dx=2y,dz/dx=xz+3d y / d x=2 y, d z / d x=x-z+3
3. dy/dt=3yz2z,dz/dt=2z+5yd y / d t=3 y z-2 z, \quad d z / d t=2 z+5 y

See Solution

Problem 556

Evaluate. (6x24x+4)dx(6x24x+4)dx=\begin{array}{l} \int\left(6 x^{2} \cdot-4 x+4\right) d x \\ \int\left(6 x^{2}-4 x+4\right) d x=\square \end{array} \square (Type an exact answer.)

See Solution

Problem 557

Evaluate. e8xdxe8xdx=\begin{array}{c} \int e^{8 x} d x \\ \int e^{8 x} d x= \end{array} \square

See Solution

Problem 558

Verify that the function satisfies the three hypotheses of Rolle's theorem on the given interval. Then find all numbers cc that satisfy the conclusion of Rolle's theorem. (Enter your answers as a commaseparated list.) f(x)=3x26x+4,[1,3]f(x)=3 x^{2}-6 x+4, \quad[-1,3] c=c= \square

See Solution

Problem 559

12. (\pts)Findthelengthofthecurverepresentedbythevectorequationpts) Find the length of the curve represented by the vector equation \vec{r}(t)=\left\langle t^{2},-9 t, 4 t^{\frac{2}{2}}\right\rangle,, 0 \leq t \leq 1$

See Solution

Problem 560

At 2:00 p.m. a car's speedometer reads 30mi/h30 \mathrm{mi} / \mathrm{h}. At 2:15p.m2: 15 \mathrm{p} . \mathrm{m}. it reads 50mi/h50 \mathrm{mi} / \mathrm{h}. Show that at some time between 2:00 and 2:152: 15 the acceleration is exactly 80mi/h280 \mathrm{mi} / \mathrm{h}^{2}. Let v(t)v(t) be the velocity of the car tt hours after 2:00 p.m. Then v(1/4)v(0)1/40=\frac{v(1 / 4)-v(0)}{1 / 4-0}= \square . By the Mean Value Theorem, there is a number cc such that 0<c<0<c< \square with v(c)=v^{\prime}(c)= \square . Since v(t)v^{\prime}(t) is the acceleration at time tt, the acceleration cc hours after 2:00 p.m. is exactly 80mi/h280 \mathrm{mi} / \mathrm{h}^{2}. Need Help? Read It

See Solution

Problem 561

Question 7 (1 point) limn3n35nn32n2+1\lim _{n \rightarrow \infty} \frac{3 n^{3}-5 n}{n^{3}-2 n^{2}+1} A. -5 B. -2 C. 1 D. 3

See Solution

Problem 562

Question 1 (1 point) \checkmark Saved
Below is a graph of the derivative y=f(x)y=f^{\prime}(x). Use the graph to identify the location of the local minimum(s) of the function f(x)f(x). A. x=±2&0x= \pm 2 \& 0 B. x=±2x= \pm 2 c. x=3&1x=-3 \& 1 D. x=1x=1

See Solution

Problem 563

A rider's height, hh, in metres on a Ferris wheel is modelled by h(t)=49cos(2πt142)+52h(t)=-49 \cos \left(\frac{2 \pi t}{142}\right)+52 where tt is time in seconds. Solve for the AROC between t=138t=138 and t=140t=140. Does this represent when the rider is going to the top of the ride, or coming back towards the ground? How do you know? Since the slope is negative, the rider is getting closer to the ground Since the slope is negative, the rider is heading backwards through time Since the slope is negative, the rider is moving to the top of the ride Since the slope is less than 1 , the rider is heading back towards the ground Previous Page Next Page Page 11 of 12

See Solution

Problem 564

b) (10 marks) Consider the following IVP problem: 14yy+10y=(2x3)2;y(0)=1;y(0)=0\frac{1}{4} y^{\prime \prime}-y^{\prime}+10 y=(2 x-3)^{2} ; y(0)=1 ; y^{\prime}(0)=0 i. Write the complementary equation for the given equation. ii. Write the auxiliary equation for the equation in part (i), solve it and hence obtain the general solution of the complementary equation. iii. Find a particular solution for the given equation. iv. Write the general solution for the given equation. v. Hence find the solution for the given IVP problem.

See Solution

Problem 565

Find the inflection points of f(x)=x4+x318x2+4f(x)=x^{4}+x^{3}-18 x^{2}+4.
Enter the exact answers in increasing order. x=x=\begin{array}{l} x=\square \\ x=\square \end{array}

See Solution

Problem 566

Use the first derivative to find all critical points and use the second derivative to find all inflection points. Use a graph to identify each critical point as a local maximum, a local minimum, or neither. f(x)=x418x2+4f(x)=x^{4}-18 x^{2}+4
NOTE: Enter the exact answers, or round them to three decimal places. Enter the number of critical points Choose one
Enter the number of inflection points Choose one

See Solution

Problem 567

1. Differentiate: y=5(x21)y=5^{\left(x^{2}-1\right)} A. x2(ln5)(5x21)x^{2}(\ln 5)\left(5^{x^{2}-1}\right) B. (ln5)5(x21)(\ln 5) 5^{\left(x^{2}-1\right)} C. (2x)5(x21)(2 x) 5^{\left(x^{2}-1\right)} D. 2x(ln5)(5x21)2 x(\ln 5)\left(5^{x^{2}-1}\right)
2. Find dydx\frac{d y}{d x} if y=ecosxy=e^{\cos \sqrt{x}} A. (sinx)ecosx(-\sin \sqrt{x}) e^{\cos \sqrt{x}} B. esinx2x\frac{-e^{\sin \sqrt{x}}}{2 \sqrt{x}} C. sinx2x(ecosx)\frac{-\sin \sqrt{x}}{2 \sqrt{x}}\left(e^{\cos \sqrt{x}}\right) D. (12sinx)ecosx1\left(-\frac{1}{2} \sin \sqrt{x}\right) e^{\cos \sqrt{x}-1}
3. Find f(x)f^{\prime}(x) for f(x)=7+e4xf(x)=\sqrt{7+e^{4 x}} A. 122e2x\frac{1}{2 \sqrt{2 e^{2 x}}} B. 2e4x7+e4x\frac{2 e^{4 x}}{\sqrt{7+e^{4 x}}} C. 5+e2x5+e2x\frac{5+e^{2 x}}{\sqrt{5+e^{2 x}}} D. xe2x15+e2x\frac{x e^{2 x-1}}{\sqrt{5+e^{2 x}}}

See Solution

Problem 568

Question 9 1 pts
Use the Alternating Series Estimation Theorem to find the minimum number of terms of the infinite series n=12(1)nn3\sum_{n=1}^{\infty} \frac{2(-1)^{n}}{n^{3}} we need to add to approximate the sum of the series with \mid error .016\mid \leq .016. 8 10 4 6

See Solution

Problem 569

Name Anahi
8. Find dydx\frac{d y}{d x} for y=arccos(x3)y=\arccos \left(\frac{x}{3}\right) A. 3x29\frac{-3}{\sqrt{x^{2}-9}} B. 19x2\frac{-1}{\sqrt{9-x^{2}}} C. x9x2\frac{-x}{\sqrt{9-x^{2}}} D. 39x2\frac{3}{\sqrt{9-x^{2}}}
9. If f(x)=e5xf(x)=e^{5 x}, then (f1)(x)=\left(f^{-1}\right)^{\prime}(x)= A. 15x\frac{1}{5 x} B. 1e5x\frac{1}{e^{5 x}} C. 15e5x\frac{1}{5 e^{5 x}} D. 2e5x-\frac{2}{e^{5 x}}

Use the table below to answer question 10. \begin{tabular}{|c|c|c|c|c|c|c|} \hlinexx & F(x)F(x) & F(x)F^{\prime}(x) & F(x)F^{\prime \prime}(x) & G(x)G(x) & G(x)G^{\prime}(x) & G(x)G^{\prime \prime}(x) \\ \hline 2 & 6 & 4 & 7 & -5 & 3 & 10 \\ \hline 5 & 2 & -4 & -2 & -3 & 2 & -4 \\ \hline \end{tabular}
10. If H(x)=G(F(x))H(x)=G(F(x)), then H(5)=H^{\prime}(5)= A. 40 B. -6 C. -14 D. -12

See Solution

Problem 570

4. If y=tan1(sinxx)y=\tan ^{-1}\left(\sin _{x} x\right), then dydx=\frac{d_{y}}{d_{x}}= A. (sec1(sinx))2\left(\sec ^{-1}(\sin x)\right)^{2} C. (sec1(sinx))2cosx\left(\sec ^{-1}(\sin x)\right)^{2} \cos x B. D. Cos22+sin2x\frac{\mathrm{Cos}^{2}}{2+\sin ^{2} x}
5. Let f(x)=x4+4x3f(x)=x^{4}+4 x-3, and let g(x)g(x) denote the inverse of ff. Then g(2)g^{\prime}(2) A. 18\frac{1}{8} C. 8 B. 132\frac{1}{32} D. 32 A. 2 B. 12\frac{1}{2} D. 12-\frac{1}{2} C. 103\frac{10}{3} B. 310-\frac{3}{10} D.

See Solution

Problem 571

Attempt 2: 2 attempts remaining.
Calculate the line integral Cxy232ds\int_{C} \frac{x y^{2}}{32} d s with respect to arc length over a curve CC that is the lower half of the circle x2+y2=16x^{2}+y^{2}=16.
The curve CC can be written with parametric equations x(t)=4cost and y(t)=4sint for πt2πx(t)=4 \cos t \quad \text { and } y(t)=4 \sin t \quad \text { for } \pi \leq t \leq 2 \pi
The resulting parameterized form of the line integral is t1t2f(t)dt\int_{t_{1}}^{t_{2}} f(t) d t where t1=πt_{1}=\pi

See Solution

Problem 572

1 Points] DETAILS MY NOTES SCALCET9 4.XP.9.005.MI. ASK YOUR T
Find the most general antiderivative of the function. (Check your answer by differentiation. Use CC for the constant of the antiderivative.) f(x)=(x+7)(2x11)f(x)=(x+7)(2 x-11)

See Solution

Problem 573

Substitution in the Indefinite Integral \qquad Part 1. \qquad
Using the substitution: u=x4u=x-4. Re-write the indefinite integral then evaluate in terms of uu. x2x4dx==\int \frac{x^{2}}{\sqrt{x-4}} d x=\int \square=\square \square Note: answer should be in terms of uu only \qquad Part 2. \qquad
Back substituting in the antiderivative you found in Part 1. above we have x2x4dx=\int \frac{x^{2}}{\sqrt{x-4}} d x= \square Note: answer should be in terms of xx only

See Solution

Problem 574

Given the function f(x)=3sin[(4x+1)4]f(x)=3 \sin \left[(4 x+1)^{4}\right], find f(x)f^{\prime}(x).
Answer Attempt 1 out of 3

See Solution

Problem 575

Question If 0=2x2x5y20=-2 x^{2}-x-5 y^{2} then find dydx\frac{d y}{d x} in terms of xx and yy.
Answer Attempt 1 out of 3

See Solution

Problem 576

Convert the integral 02xxdydx\int_{0}^{\sqrt{2}} \int_{-x}^{x} d y d x to polar coordinates and evaluate it (use tt for θ\theta ): With a=a= \square \square \square and d=d= \square 02xxdydx=abcddrdt\int_{0}^{\sqrt{2}} \int_{-x}^{x} d y d x=\int_{a}^{b} \int_{c}^{d} \square d r d t =abdt=ab=.\begin{aligned} = & \int_{a}^{b} \square d t \\ & =\square_{a}^{b} \\ & =\square . \end{aligned}

See Solution

Problem 577

Find the mass of the rectangular region 0x3,0y30 \leq x \leq 3,0 \leq y \leq 3 with density function ρ(x,y)=3y\rho(x, y)=3-y. \square

See Solution

Problem 578

Correct
Use integration by substitution to solve the integral below. Use C for the constant of integration. 6(ln(y))3ydy\int \frac{-6(\ln (y))^{3}}{y} d y
Answer

See Solution

Problem 579

Find f(x)f^{\prime}(x) for f(x)=f(x)=5(x2+2)cot(x)1cos(x)csc(x)f^{\prime}(x)=\square \quad f(x)=\frac{5\left(x^{2}+2\right) \cot (x)}{1-\cos (x) \csc (x)}

See Solution

Problem 580

b) g(s)=164.g(s)=g(s)=16^{4} . \quad g^{\prime}(s)=

See Solution

Problem 581

Chapter 5 - More Applicatlons 260 5.1 Exercises
In Exercises 1-12, determine the critical numbers of each function, then use the First Derivative Test to determine whether the function has a local maximum, a local minimum, or neither at each critical number. Confirm your answers graphically (1.) f(x)=13x3x23x+3f(x)=\frac{1}{3} x^{3}-x^{2}-3 x+3
2. f(x)=3x44x36x2+12xf(x)=3 x^{4}-4 x^{3}-6 x^{2}+12 x

See Solution

Problem 582

Evaluate the given integral by changing to polar coordinates. D2x2ydA\iint_{D} 2 x^{2} y d A, where DD is the top half of the disk with center the origin and radius 4.

See Solution

Problem 583

Evaluate the definite integral (if it exists) ee46xln(x)dx\int_{e}^{e^{4}} \frac{-6}{x \sqrt{\ln (x)}} d x
If the integral does not exist, type "DNE".

See Solution

Problem 584

Example 8: If f(x)=e2x3xf(x)=e^{2 x}-3 x, find ff^{\prime} and ff^{\prime \prime}

See Solution

Problem 585

1. a) Find the value of mm if limx0mx+3x24x8x2=3\lim _{x \rightarrow 0} \frac{m x+3 x^{2}}{4 x-8 x^{2}}=3.

See Solution

Problem 586

7.2a - Derivatives of the Sine an
1. Evaluate limθ0sin4θsin6θ=23\lim _{\theta \rightarrow 0} \frac{\sin 4 \theta}{\sin 6 \theta}=\frac{2}{3}
2. Evaluate limθ0sinθθ+tanθ\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta+\tan \theta}
3. Evaluate limx1sin(x1)x2+x2\lim _{x \rightarrow 1} \frac{\sin (x-1)}{x^{2}+x-2}

See Solution

Problem 587

Evaluate the definite integrals a) π/2π5cosxdx=\int_{\pi / 2}^{\pi} 5 \cos x d x= \square b) 0π/414sec2θdθ=\int_{0}^{\pi / 4} 14 \sec ^{2} \theta d \theta= \square c) π/6π/37csctcottdt=\int_{\pi / 6}^{\pi / 3} 7 \csc t \cot t d t= \square

See Solution

Problem 588

=limx0e2x+ex2ex=\lim _{x \rightarrow 0} \frac{e^{-2 x}+e^{x}}{2 e^{x}}

See Solution

Problem 589

Logarithms as anti-derivatives. 5x(lnx)2dx=\int \frac{-5}{x(\ln x)^{2}} d x= \square Hint: Use the natural log function and substitution.

See Solution

Problem 590

(1 point) Evaluate the definite integral. 64(x+4)ex2+8x+15dx=\int_{-6}^{-4}(x+4) e^{x^{2}+8 x+15} d x= \square

See Solution

Problem 591

If ff is continuous and 132f(t)dt=10\int_{1}^{32} f(t) d t=10, find the integral 12t4f(t5)dt\int_{1}^{2} t^{4} f\left(t^{5}\right) d t. Answer: \square

See Solution

Problem 592

\begin{problem} The graph shown is used to find the following characteristics of the function:
1. The domain and range of the function.
2. The intercepts, if any.
3. Horizontal asymptotes, if any.
4. Vertical asymptotes, if any.
5. Oblique asymptotes, if any.

The domain of the function is \square (Express your answer in interval notation. Use integers or fractions for any numbers in the expression.) \end{problem}

See Solution

Problem 593

3.6 Exercises
1. Find the derivatives of the following functions: (a) f(s)=s1s+1f(s)=\frac{\sqrt{s}-1}{\sqrt{s}+1} (b) f(x)=(1xx)(x2+1)f(x)=\left(\frac{1}{x}-x\right)\left(x^{2}+1\right) (c) g(x)=sec(2x+1)cot(x2)g(x)=\sec (2 x+1) \cot \left(x^{2}\right) (d) s(t)=1+csct1cscts(t)=\frac{1+\csc t}{1-\csc t} (e) f(x)=x3sinxcosxf(x)=x^{3} \sin x \cos x. (f) x1/2+y1/2=1x^{1 / 2}+y^{1 / 2}=1.

See Solution

Problem 594

Evaluate the indefinite integral 7x1+x4dx\int \frac{-7 x}{1+x^{4}} d x
Note: Any arbitrary constants used must be an upper-case "C".

See Solution

Problem 595

Evaluate the integral by any method. sin(3x)7+cos(3x)dx=\int \frac{\sin (3 x)}{7+\cos (3 x)} d x= \square +C+C

See Solution

Problem 596

K=0π4(2cos2xcos4x)dxK=\int_{0}^{\frac{\pi}{4}}(2 \cos 2 x-\cos 4 x) d x

See Solution

Problem 597

2. (xsin(yx)ycos(yx))dx+xcos(yx)dy=0\left(x \sin \left(\frac{y}{x}\right)-y \cos \left(\frac{y}{x}\right)\right) d x+x \cos \left(\frac{y}{x}\right) d y=0 diferansiyel denklemin genel çözümünü bulunuz (20p).

See Solution

Problem 598

(1 point)
Use the third-order Taylor polynonial for exsin(3x)e^{x} \sin (3 x) at x=0x=0 to approximate e17sin(3/7)e^{\frac{1}{7}} \sin (3 / 7) by a rational number. e17sin(3/7)e^{\frac{1}{7}} \sin (3 / 7) \approx \square

See Solution

Problem 599

Find the differential of y=cos(6πx)y=\cos (-6 \pi x).

See Solution

Problem 600

Compute (a) Δy\Delta y and (b) dy for the given values of xx and dx=Δx\mathrm{dx}=\Delta x. y=7x2,x=2,Δx=.4y=7-x^{2}, \quad x=-2, \quad \Delta x=.4 (a) Δy=\Delta y= \square (b) dy=d y= 16 \square

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord