Solved on Feb 27, 2024

Solve the system Ax=bA \mathbf{x}=\mathbf{b} using the given factorization A=PLUA=P^{\top} L U, where b=[117]\mathbf{b}=\begin{bmatrix}1 \\ 1 \\ 7\end{bmatrix} and x=[232]\mathbf{x}=\begin{bmatrix}2 \\ 3 \\ 2\end{bmatrix}.

STEP 1

Assumptions
1. The matrix AA is given and has a factorization A=PLUA=P^{\top} L U.
2. The permutation matrix PP, lower triangular matrix LL, and upper triangular matrix UU are provided.
3. The vector b\mathbf{b} is given.
4. The system of equations is Ax=bA \mathbf{x}=\mathbf{b}.
5. The identity matrix is denoted by II.
6. The property PP=IP P^{\top} = I is given and will be used in the solution.

STEP 2

First, we need to apply the permutation matrix PP to the vector b\mathbf{b} to get PbP \mathbf{b}.
Pb=[010100001][117]P \mathbf{b} = \left[\begin{array}{lll} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right] \left[\begin{array}{l} 1 \\ 1 \\ 7 \end{array}\right]

STEP 3

Perform the matrix multiplication to find PbP \mathbf{b}.
Pb=[117]P \mathbf{b} = \left[\begin{array}{l} 1 \\ 1 \\ 7 \end{array}\right]

STEP 4

Now, we need to solve the system LUx=PbL U \mathbf{x} = P \mathbf{b}, which is equivalent to the original system Ax=bA \mathbf{x} = \mathbf{b}.

STEP 5

First, let's solve the system Ly=PbL \mathbf{y} = P \mathbf{b} for y\mathbf{y}, where y=Ux\mathbf{y} = U \mathbf{x}.

STEP 6

Write down the system Ly=PbL \mathbf{y} = P \mathbf{b} using the given matrices LL and PbP \mathbf{b}.
[10001012121][y1y2y3]=[117]\left[\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \frac{1}{2} & -\frac{1}{2} & 1 \end{array}\right] \left[\begin{array}{l} y_1 \\ y_2 \\ y_3 \end{array}\right] = \left[\begin{array}{l} 1 \\ 1 \\ 7 \end{array}\right]

STEP 7

Since LL is a lower triangular matrix, we can solve for y\mathbf{y} using forward substitution.

STEP 8

From the first row, we directly get y1=1y_1 = 1.

STEP 9

From the second row, we directly get y2=1y_2 = 1.

STEP 10

From the third row, we have 12y112y2+y3=7\frac{1}{2} y_1 - \frac{1}{2} y_2 + y_3 = 7.

STEP 11

Substitute y1y_1 and y2y_2 into the third equation.
121121+y3=7\frac{1}{2} \cdot 1 - \frac{1}{2} \cdot 1 + y_3 = 7

STEP 12

Simplify the equation to solve for y3y_3.
y3=7+1212y_3 = 7 + \frac{1}{2} - \frac{1}{2}

STEP 13

Calculate the value of y3y_3.
y3=7y_3 = 7

STEP 14

Now we have the vector y=[117]\mathbf{y} = \left[\begin{array}{l} 1 \\ 1 \\ 7 \end{array}\right].

STEP 15

Next, we need to solve the system Ux=yU \mathbf{x} = \mathbf{y} for x\mathbf{x}.

STEP 16

Write down the system Ux=yU \mathbf{x} = \mathbf{y} using the given matrix UU and vector y\mathbf{y}.
[2320110072][x1x2x3]=[117]\left[\begin{array}{rrr} 2 & 3 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & -\frac{7}{2} \end{array}\right] \left[\begin{array}{l} x_1 \\ x_2 \\ x_3 \end{array}\right] = \left[\begin{array}{l} 1 \\ 1 \\ 7 \end{array}\right]

STEP 17

Since UU is an upper triangular matrix, we can solve for x\mathbf{x} using back substitution.

STEP 18

From the third row, we get 72x3=7-\frac{7}{2} x_3 = 7.

STEP 19

Solve for x3x_3.
x3=2x_3 = -2

STEP 20

From the second row, we have x2x3=1x_2 - x_3 = 1.

STEP 21

Substitute x3x_3 into the second equation.
x2(2)=1x_2 - (-2) = 1

STEP 22

Solve for x2x_2.
x2=12=1x_2 = 1 - 2 = -1

STEP 23

From the first row, we have 2x1+3x2+2x3=12 x_1 + 3 x_2 + 2 x_3 = 1.

STEP 24

Substitute x2x_2 and x3x_3 into the first equation.
2x1+3(1)+2(2)=12 x_1 + 3 \cdot (-1) + 2 \cdot (-2) = 1

STEP 25

Solve for x1x_1.
2x134=12 x_1 - 3 - 4 = 1

STEP 26

Simplify the equation to find x1x_1.
2x1=1+3+42 x_1 = 1 + 3 + 4

STEP 27

Calculate the value of x1x_1.
x1=82=4x_1 = \frac{8}{2} = 4

STEP 28

Now we have the solution vector x=[412]\mathbf{x} = \left[\begin{array}{l} 4 \\ -1 \\ -2 \end{array}\right].
The solution to the system Ax=bA \mathbf{x} = \mathbf{b} is x=[412]\mathbf{x} = \left[\begin{array}{l} 4 \\ -1 \\ -2 \end{array}\right].

Was this helpful?
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord