Solved on Jan 29, 2024

Find the trigonometric ratios and angle θ\theta when cosθ=420\cos \theta = \frac{-4}{\sqrt{20}} and 0θ1800^{\circ} \leq \theta \leq 180^{\circ}.

STEP 1

Assumptions
1. We are given that cosθ=420\cos \theta=\frac{-4}{\sqrt{20}}.
2. The angle θ\theta is in the range 0θ1800^{\circ} \leq \theta \leq 180^{\circ}, which places it in the first or second quadrant.
3. We need to find the six trigonometric ratios: sinθ\sin \theta, cosθ\cos \theta, tanθ\tan \theta, cscθ\csc \theta, secθ\sec \theta, and cotθ\cot \theta.
4. We will use the Pythagorean identity to find sinθ\sin \theta and then use the definitions of the other trigonometric functions to find the remaining ratios.
5. To find the measure of θ\theta, we will use the inverse trigonometric function of cosine.

STEP 2

Since cosθ=420\cos \theta=\frac{-4}{\sqrt{20}}, we can simplify the denominator by multiplying the numerator and the denominator by 20\sqrt{20} to get rid of the square root in the denominator.
cosθ=420×2020\cos \theta=\frac{-4}{\sqrt{20}} \times \frac{\sqrt{20}}{\sqrt{20}}

STEP 3

Simplify the expression by carrying out the multiplication.
cosθ=42020\cos \theta=\frac{-4\sqrt{20}}{20}

STEP 4

Reduce the fraction by dividing both the numerator and the denominator by 4.
cosθ=205\cos \theta=\frac{-\sqrt{20}}{5}

STEP 5

Now, we will use the Pythagorean identity sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1 to find sinθ\sin \theta.
sin2θ=1cos2θ\sin^2 \theta = 1 - \cos^2 \theta

STEP 6

Substitute the value of cosθ\cos \theta into the equation.
sin2θ=1(205)2\sin^2 \theta = 1 - \left(\frac{-\sqrt{20}}{5}\right)^2

STEP 7

Simplify the right side of the equation.
sin2θ=12025\sin^2 \theta = 1 - \frac{20}{25}

STEP 8

Further simplify the right side of the equation.
sin2θ=25252025\sin^2 \theta = \frac{25}{25} - \frac{20}{25}

STEP 9

Subtract the fractions.
sin2θ=525\sin^2 \theta = \frac{5}{25}

STEP 10

Reduce the fraction to its simplest form.
sin2θ=15\sin^2 \theta = \frac{1}{5}

STEP 11

Take the square root of both sides to find sinθ\sin \theta. Since 0θ1800^{\circ} \leq \theta \leq 180^{\circ}, sinθ\sin \theta will be positive in both the first and second quadrants.
sinθ=15\sin \theta = \sqrt{\frac{1}{5}}

STEP 12

Simplify the square root.
sinθ=55\sin \theta = \frac{\sqrt{5}}{5}

STEP 13

Now that we have sinθ\sin \theta and cosθ\cos \theta, we can find tanθ\tan \theta using the definition tanθ=sinθcosθ\tan \theta = \frac{\sin \theta}{\cos \theta}.
tanθ=sinθcosθ\tan \theta = \frac{\sin \theta}{\cos \theta}

STEP 14

Substitute the values of sinθ\sin \theta and cosθ\cos \theta into the equation.
tanθ=55205\tan \theta = \frac{\frac{\sqrt{5}}{5}}{\frac{-\sqrt{20}}{5}}

STEP 15

Simplify the expression by multiplying the numerator and the denominator by 5.
tanθ=520\tan \theta = \frac{\sqrt{5}}{-\sqrt{20}}

STEP 16

Simplify the expression by multiplying the numerator and the denominator by 20\sqrt{20}.
tanθ=5202020\tan \theta = \frac{\sqrt{5} \cdot \sqrt{20}}{-\sqrt{20} \cdot \sqrt{20}}

STEP 17

Simplify the expression.
tanθ=10020\tan \theta = \frac{\sqrt{100}}{-20}

STEP 18

Simplify the square root.
tanθ=1020\tan \theta = \frac{10}{-20}

STEP 19

Reduce the fraction to its simplest form.
tanθ=12\tan \theta = -\frac{1}{2}

STEP 20

To find cscθ\csc \theta, use the definition cscθ=1sinθ\csc \theta = \frac{1}{\sin \theta}.
cscθ=1sinθ\csc \theta = \frac{1}{\sin \theta}

STEP 21

Substitute the value of sinθ\sin \theta.
cscθ=155\csc \theta = \frac{1}{\frac{\sqrt{5}}{5}}

STEP 22

Simplify the expression by multiplying the numerator and the denominator by 5.
cscθ=55\csc \theta = \frac{5}{\sqrt{5}}

STEP 23

Multiply the numerator and the denominator by 5\sqrt{5} to rationalize the denominator.
cscθ=555\csc \theta = \frac{5\sqrt{5}}{5}

STEP 24

Simplify the expression.
cscθ=5\csc \theta = \sqrt{5}

STEP 25

To find secθ\sec \theta, use the definition secθ=1cosθ\sec \theta = \frac{1}{\cos \theta}.
secθ=1cosθ\sec \theta = \frac{1}{\cos \theta}

STEP 26

Substitute the value of cosθ\cos \theta.
secθ=1205\sec \theta = \frac{1}{\frac{-\sqrt{20}}{5}}

STEP 27

Simplify the expression by multiplying the numerator and the denominator by 5.
secθ=520\sec \theta = \frac{5}{-\sqrt{20}}

STEP 28

Multiply the numerator and the denominator by 20\sqrt{20} to rationalize the denominator.
secθ=52020\sec \theta = \frac{5\sqrt{20}}{-20}

STEP 29

Simplify the expression.
secθ=204\sec \theta = \frac{-\sqrt{20}}{4}

STEP 30

To find cotθ\cot \theta, use the definition cotθ=1tanθ\cot \theta = \frac{1}{\tan \theta}.
cotθ=1tanθ\cot \theta = \frac{1}{\tan \theta}

STEP 31

Substitute the value of tanθ\tan \theta.
cotθ=112\cot \theta = \frac{1}{-\frac{1}{2}}

STEP 32

Simplify the expression.
cotθ=2\cot \theta = -2
The six trigonometric ratios are:
sinθ=55\sin \theta = \frac{\sqrt{5}}{5} cosθ=205\cos \theta = \frac{-\sqrt{20}}{5} tanθ=12\tan \theta = -\frac{1}{2} cscθ=5\csc \theta = \sqrt{5} secθ=204\sec \theta = \frac{-\sqrt{20}}{4} cotθ=2\cot \theta = -2

STEP 33

To determine the measure of θ\theta, we will use the inverse cosine function, since we have the value of cosθ\cos \theta.
θ=cos1(205)\theta = \cos^{-1}\left(\frac{-\sqrt{20}}{5}\right)

STEP 34

Use a calculator to find the value of θ\theta to the nearest degree.
θcos1(25)\theta \approx \cos^{-1}\left(-\frac{2}{\sqrt{5}}\right)

STEP 35

The calculator will give the value of θ\theta in degrees.
θ104\theta \approx 104^{\circ}
To the nearest degree, the measure of θ\theta is 104104^{\circ}.

Was this helpful?
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord