Solved on Dec 03, 2023

Find the closest vector x\mathbf{x} in the subspace WW spanned by v1\mathbf{v}_{1} and v2\mathbf{v}_{2} to the given vector y\mathbf{y}, where y=[11119]\mathbf{y}=\left[\begin{array}{r}1 \\ -1 \\ 1 \\ 19\end{array}\right], v1=[1111]\mathbf{v}_{1}=\left[\begin{array}{r}1 \\ -1 \\ -1 \\ 1\end{array}\right], and v2=[1102]\mathbf{v}_{2}=\left[\begin{array}{r}-1 \\ 1 \\ 0 \\ 2\end{array}\right].

STEP 1

Assumptions
1. The vector y\mathbf{y} is given by [11119]\left[\begin{array}{r} 1 \\ -1 \\ 1 \\ 19 \end{array}\right].
2. The subspace WW is spanned by vectors v1\mathbf{v}_{1} and v2\mathbf{v}_{2}, where v1=[1111]\mathbf{v}_{1}=\left[\begin{array}{r} 1 \\ -1 \\ -1 \\ 1 \end{array}\right] and v2=[1102]\mathbf{v}_{2}=\left[\begin{array}{r} -1 \\ 1 \\ 0 \\ 2 \end{array}\right].
3. We are looking for the closest point to y\mathbf{y} in the subspace WW.

STEP 2

The closest point to y\mathbf{y} in the subspace WW is the orthogonal projection of y\mathbf{y} onto WW. This point, say p\mathbf{p}, can be expressed as a linear combination of the vectors spanning WW, i.e., p=c1v1+c2v2\mathbf{p} = c_1\mathbf{v}_{1} + c_2\mathbf{v}_{2} for some scalars c1c_1 and c2c_2.

STEP 3

The orthogonal projection of y\mathbf{y} onto WW is given by the formula:
p=yv1v1v1v1+yv2v2v2v2\mathbf{p} = \frac{\mathbf{y} \cdot \mathbf{v}_{1}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}}\mathbf{v}_{1} + \frac{\mathbf{y} \cdot \mathbf{v}_{2}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}}\mathbf{v}_{2}

STEP 4

First, calculate the dot products yv1\mathbf{y} \cdot \mathbf{v}_{1}, yv2\mathbf{y} \cdot \mathbf{v}_{2}, v1v1\mathbf{v}_{1} \cdot \mathbf{v}_{1}, and v2v2\mathbf{v}_{2} \cdot \mathbf{v}_{2}.

STEP 5

Calculate yv1\mathbf{y} \cdot \mathbf{v}_{1}:
yv1=(1)(1)+(1)(1)+(1)(1)+(19)(1)=20\mathbf{y} \cdot \mathbf{v}_{1} = (1)(1) + (-1)(-1) + (1)(-1) + (19)(1) = 20

STEP 6

Calculate yv2\mathbf{y} \cdot \mathbf{v}_{2}:
yv2=(1)(1)+(1)(1)+(1)(0)+(19)(2)=35\mathbf{y} \cdot \mathbf{v}_{2} = (1)(-1) + (-1)(1) + (1)(0) + (19)(2) = 35

STEP 7

Calculate v1v1\mathbf{v}_{1} \cdot \mathbf{v}_{1}:
v1v1=(1)(1)+(1)(1)+(1)(1)+(1)(1)=4\mathbf{v}_{1} \cdot \mathbf{v}_{1} = (1)(1) + (-1)(-1) + (-1)(-1) + (1)(1) = 4

STEP 8

Calculate v2v2\mathbf{v}_{2} \cdot \mathbf{v}_{2}:
v2v2=(1)(1)+(1)(1)+(0)(0)+(2)(2)=6\mathbf{v}_{2} \cdot \mathbf{v}_{2} = (-1)(-1) + (1)(1) + (0)(0) + (2)(2) = 6

STEP 9

Substitute these values into the formula for p\mathbf{p}:
p=204v1+356v2\mathbf{p} = \frac{20}{4}\mathbf{v}_{1} + \frac{35}{6}\mathbf{v}_{2}

STEP 10

Simplify to get p\mathbf{p}:
p=5v1+356v2\mathbf{p} = 5\mathbf{v}_{1} + \frac{35}{6}\mathbf{v}_{2}

STEP 11

Substitute the values of v1\mathbf{v}_{1} and v2\mathbf{v}_{2} into the equation for p\mathbf{p}:
p=5[1111]+356[1102]\mathbf{p} = 5\left[\begin{array}{r} 1 \\ -1 \\ -1 \\ 1 \end{array}\right] + \frac{35}{6}\left[\begin{array}{r} -1 \\ 1 \\ 0 \\ 2 \end{array}\right]

STEP 12

Perform the scalar multiplication:
p=[5555]+[3563560703]\mathbf{p} = \left[\begin{array}{r} 5 \\ -5 \\ -5 \\ 5 \end{array}\right] + \left[\begin{array}{r} -\frac{35}{6} \\ \frac{35}{6} \\ 0 \\ \frac{70}{3} \end{array}\right]

STEP 13

Add the vectors to get p\mathbf{p}:
p=[53565+35655+703]=[56565853]\mathbf{p} = \left[\begin{array}{r} 5 - \frac{35}{6} \\ -5 + \frac{35}{6} \\ -5 \\ 5 + \frac{70}{3} \end{array}\right] = \left[\begin{array}{r} -\frac{5}{6} \\ \frac{5}{6} \\ -5 \\ \frac{85}{3} \end{array}\right]
So, the closest point to y\mathbf{y} in the subspace WW is the vector p=[56565853]\mathbf{p} = \left[\begin{array}{r} -\frac{5}{6} \\ \frac{5}{6} \\ -5 \\ \frac{85}{3} \end{array}\right].

Was this helpful?
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord