Solved on Jan 25, 2024

Find the limit of sin2xx2cot4x\frac{\sin 2x}{x^2 \cot 4x} as xx approaches 0.

STEP 1

Assumptions
1. We are to evaluate the limit of the function sin2xx2cot4x\frac{\sin 2x}{x^{2} \cot 4x} as xx approaches 0.
2. We will use the standard limit limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1.
3. We will use the trigonometric identity cotx=1tanx\cot x = \frac{1}{\tan x}.
4. We will use the trigonometric identity tan2x=2tanx1tan2x\tan 2x = \frac{2 \tan x}{1 - \tan^2 x}.

STEP 2

First, let's rewrite the function using trigonometric identities. We know that cotx=cosxsinx\cot x = \frac{\cos x}{\sin x}, so we can write cot4x\cot 4x as cos4xsin4x\frac{\cos 4x}{\sin 4x}.
sin2xx2cot4x=sin2xx2sin4xcos4x\frac{\sin 2x}{x^{2} \cot 4x} = \frac{\sin 2x}{x^{2}} \cdot \frac{\sin 4x}{\cos 4x}

STEP 3

Now let's simplify the expression by separating the terms involving xx and the trigonometric functions.
sin2xx2sin4xcos4x=sin2xxsin4xx1cos4x\frac{\sin 2x}{x^{2}} \cdot \frac{\sin 4x}{\cos 4x} = \frac{\sin 2x}{x} \cdot \frac{\sin 4x}{x} \cdot \frac{1}{\cos 4x}

STEP 4

We can now evaluate the limit of each part separately as xx approaches 0. For the first term, we use the standard limit limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1. However, we need to adjust it for sin2x\sin 2x.
limx0sin2xx=limx02sin2x2x\lim_{x \to 0} \frac{\sin 2x}{x} = \lim_{x \to 0} 2 \cdot \frac{\sin 2x}{2x}

STEP 5

Using the standard limit, we get:
limx02sin2x2x=2limx0sin2x2x=21=2\lim_{x \to 0} 2 \cdot \frac{\sin 2x}{2x} = 2 \cdot \lim_{x \to 0} \frac{\sin 2x}{2x} = 2 \cdot 1 = 2

STEP 6

For the second term, we need to adjust the standard limit for sin4x\sin 4x.
limx0sin4xx=limx04sin4x4x\lim_{x \to 0} \frac{\sin 4x}{x} = \lim_{x \to 0} 4 \cdot \frac{\sin 4x}{4x}

STEP 7

Using the standard limit, we get:
limx04sin4x4x=4limx0sin4x4x=41=4\lim_{x \to 0} 4 \cdot \frac{\sin 4x}{4x} = 4 \cdot \lim_{x \to 0} \frac{\sin 4x}{4x} = 4 \cdot 1 = 4

STEP 8

For the third term, cos4x\cos 4x, we know that limx0cos4x=cos0=1\lim_{x \to 0} \cos 4x = \cos 0 = 1.

STEP 9

Now we can combine the results of the limits.
limx0sin2xx2cot4x=limx0sin2xxlimx0sin4xxlimx01cos4x\lim_{x \to 0} \frac{\sin 2x}{x^{2} \cot 4x} = \lim_{x \to 0} \frac{\sin 2x}{x} \cdot \lim_{x \to 0} \frac{\sin 4x}{x} \cdot \lim_{x \to 0} \frac{1}{\cos 4x}

STEP 10

Substitute the values we found for each limit.
limx0sin2xx2cot4x=241\lim_{x \to 0} \frac{\sin 2x}{x^{2} \cot 4x} = 2 \cdot 4 \cdot 1

STEP 11

Calculate the product of the limits.
limx0sin2xx2cot4x=241=8\lim_{x \to 0} \frac{\sin 2x}{x^{2} \cot 4x} = 2 \cdot 4 \cdot 1 = 8
The correct answer is d. 8.

Was this helpful?
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord