Solved on Sep 19, 2023

Differentiate the function y=1p+kepy = \frac{1}{p+k e^{p}} and find y(p)y'(p).

STEP 1

Question: What does the derivative of a function at a point measure?
A) The rate of change of the function at that point. B) The slope of the tangent line at that point. C) Both A and B. D) None of the above.
Answer: C) Both A and B.

STEP 2

Question: How can we rewrite the function y=1p+kepy=\frac{1}{p+ke^{p}} to simplify the differentiation process?
A) y=(p+kep)1y=(p+ke^{p})^{-1} B) y=p+kepy=p+ke^{-p} C) y=p+kepy=p+ke^{p} D) y=(p+kep)2y=(p+ke^{p})^2
Answer: A) y=(p+kep)1y=(p+ke^{p})^{-1}

STEP 3

Question: Which rule can we apply to differentiate the function y=(p+kep)1y=(p+ke^{p})^{-1}?
A) Product rule B) Quotient rule C) Chain rule D) Power rule
Answer: C) Chain rule

STEP 4

Question: If we apply the chain rule to differentiate y=(p+kep)1y=(p+ke^{p})^{-1}, what is the derivative?
A) y(p)=1(p+kep)2(1+kep)y^{\prime}(p) = -1 \cdot (p+ke^{p})^{-2} \cdot (1+ke^{p}) B) y(p)=1(p+kep)2(1+kep)y^{\prime}(p) = -1 \cdot (p+ke^{p})^{-2} \cdot (1+ke^{-p}) C) y(p)=1(p+kep)2(1+ke2p)y^{\prime}(p) = -1 \cdot (p+ke^{p})^{-2} \cdot (1+ke^{2p}) D) y(p)=1(p+kep)2(1+k)y^{\prime}(p) = -1 \cdot (p+ke^{p})^{-2} \cdot (1+k)
Answer: A) y(p)=1(p+kep)2(1+kep)y^{\prime}(p) = -1 \cdot (p+ke^{p})^{-2} \cdot (1+ke^{p})

STEP 5

Question: What is the simplified form of the derivative y(p)=1(p+kep)2(1+kep)y^{\prime}(p) = -1 \cdot (p+ke^{p})^{-2} \cdot (1+ke^{p})?
A) y(p)=1+kep(p+kep)2y^{\prime}(p) = -\frac{1+ke^{p}}{(p+ke^{p})^{2}} B) y(p)=1+kep(p+kep)2y^{\prime}(p) = \frac{1+ke^{p}}{(p+ke^{p})^{2}} C) y(p)=1+ke2p(p+kep)2y^{\prime}(p) = -\frac{1+ke^{2p}}{(p+ke^{p})^{2}} D) y(p)=1+kep(p+kep)2y^{\prime}(p) = -\frac{1+ke^{-p}}{(p+ke^{p})^{2}}
Answer: A) y(p)=1+kep(p+kep)2y^{\prime}(p) = -\frac{1+ke^{p}}{(p+ke^{p})^{2}}

Was this helpful?
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord