Solved on Oct 29, 2023

Find the basis and dimension of the subspace VR4V \subset \mathbb{R}^{4} given by the homogeneous system x1+2x2+x3+2x4=0,3x1+5x2+4x3+7x4=0x_1 + 2x_2 + x_3 + 2x_4 = 0, 3x_1 + 5x_2 + 4x_3 + 7x_4 = 0. Then, find the homogeneous system of linear equations that define the subspace WR4W \subset \mathbb{R}^{4} spanned by the basis of VV and the vector w=(1,0,0,0)w = (1, 0, 0, 0).

STEP 1

Assumptions1. The subspace VV is given by the homogeneous system of linear equations. The system of linear equations is{x1+x+x3+x4=03x1+5x+4x3+7x4=0\left\{\begin{array}{c} x_{1}+ x_{}+x_{3}+ x_{4}=0 \\ 3 x_{1}+5 x_{}+4 x_{3}+7 x_{4}=0\end{array}\right. 3. We need to find a basis A\mathcal{A} and the dimension of the subspace VV
4. We also need to find a homogeneous system of linear equations for the subspace WW spanned by the basis A\mathcal{A} and the vector w=(1,0,0,0)w=(1,0,0,0)

STEP 2

First, we need to solve the given system of linear equations. We can do this by using the Gaussian elimination method. The augmented matrix for the system of equations is[121205470]\left[\begin{array}{cccc|c} 1 &2 &1 &2 &0 \\ &5 &4 &7 &0\end{array}\right]

STEP 3

We can subtract3 times the first row from the second row to simplify the matrix. This gives us[1212001110]\left[\begin{array}{cccc|c} 1 &2 &1 &2 &0 \\ 0 & -1 &1 &1 &0\end{array}\right]

STEP 4

Next, we can multiply the second row by -1 to get[1212001110]\left[\begin{array}{cccc|c} 1 &2 &1 &2 &0 \\ 0 &1 & -1 & -1 &0\end{array}\right]

STEP 5

We can subtract2 times the second row from the first row to get[1034001110]\left[\begin{array}{cccc|c} 1 &0 &3 &4 &0 \\ 0 &1 & -1 & -1 &0\end{array}\right]

STEP 6

The system of equations corresponding to this matrix is{x1+3x3+4x4=0x2x3x4=0\left\{\begin{array}{c} x_{1}+3 x_{3}+4 x_{4}=0 \\ x_{2}-x_{3}-x_{4}=0\end{array}\right. We can express x3x_{3} and x4x_{4} in terms of x1x_{1} and x2x_{2}{x3=13x1+13x2x4=43x1+13x2\left\{\begin{array}{c} x_{3}=-\frac{1}{3}x_{1}+\frac{1}{3}x_{2} \\ x_{4}=-\frac{4}{3}x_{1}+\frac{1}{3}x_{2} \end{array}\right.

STEP 7

The general solution to the system is given by[x1x2x3x4]=x1[101343]+x2[011313]\left[\begin{array}{c} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{array}\right]=x_{1}\left[\begin{array}{c} 1 \\ 0 \\ -\frac{1}{3} \\ -\frac{4}{3} \end{array}\right]+x_{2}\left[\begin{array}{c} 0 \\ 1 \\ \frac{1}{3} \\ \frac{1}{3} \end{array}\right] The vectors [101343]\left[\begin{array}{c} 1 \\ 0 \\ -\frac{1}{3} \\ -\frac{4}{3} \end{array}\right] and [011313]\left[\begin{array}{c} 0 \\ 1 \\ \frac{1}{3} \\ \frac{1}{3} \end{array}\right] form a basis A\mathcal{A} for the subspace VV. The dimension of the subspace VV is2.

STEP 8

Now, let's consider the subspace WW spanned by the basis A\mathcal{A} and the vector w=(1,0,0,0)w=(1,0,0,0). We can write down the augmented matrix for the system of equations corresponding to the subspace WW[1013430011313010000]\left[\begin{array}{cccc|c} 1 &0 & -\frac{1}{3} & -\frac{4}{3} &0 \\ 0 &1 & \frac{1}{3} & \frac{1}{3} &0 \\ 1 &0 &0 &0 &0\end{array}\right]

STEP 9

We can subtract the first row from the third row to get[34333343]\left[\begin{array}{cccc|c} & & -\frac{}{3} & -\frac{4}{3} & \\ & & \frac{}{3} & \frac{}{3} & \\ & & \frac{}{3} & \frac{4}{3} &\end{array}\right]

STEP 10

Finally, we can multiply the third row by3 to get[040000040]\left[\begin{array}{cccc|c} &0 & - & -4 &0 \\ 0 & & & &0 \\ 0 &0 & &4 &0\end{array}\right] The system of equations corresponding to this matrix is{xx34x4=0x2+x3+x4=0x3+4x4=0\left\{\begin{array}{c} x_{}-x_{3}-4 x_{4}=0 \\ x_{2}+x_{3}+x_{4}=0 \\ x_{3}+4 x_{4}=0\end{array}\right. This is the homogeneous system of linear equations whose set of solutions is equal to WW.

Was this helpful?
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord