Solved on Feb 09, 2024

Exercise 1: Limits 3) Write the reference limits of the function lnx\ln x 4) Using these limits, calculate the limits of the following functions at the bounds of their domain: a) f(x)=x22+lnxf(x)=x^{2}-2+\ln x b) g(x)=x2+(2lnx)2g(x)=x^{2}+(2-\ln x)^{2} c) h(x)=ln(x+2)1+x2h(x)=\frac{\ln (x+2)}{1+x^{2}} d) l(x)=x(lnx)2l(x)=x(\ln x)^{2}
Exercise 2: Derivative and sign study of the derivative Calculate the derivative function of the following functions and study the sign of the derivative: 4) f(x)=1+(lnx)2f(x)=-1+(\ln x)^{2} 5) g(x)=lnxx+1g(x)=\ln \frac{x}{x+1} 6) h(x)=lnx2x+4h(x)=\ln \left|\frac{x-2}{x+4}\right|
Exercise 3: Complex numbers 3) Solve the equation z22iz2=0z^{2}-2 i z-2=0 in the set C\mathbb{C} of complex numbers 4) Let z1z_{1} and z2z_{2} be the solutions of this equation such that Re(z1)>Re(z2)\operatorname{Re}\left(z_{1}\right)>\operatorname{Re}\left(z_{2}\right).

STEP 1

Exercice 1 : Limites
Assumptions
1. We are dealing with the natural logarithm function, denoted as ln\ln.
2. We will use the standard limits of the natural logarithm function to solve the problems.
3. The domain of the natural logarithm function is (0,+)(0, +\infty).

STEP 2

Write the reference limits for the natural logarithm function.
limx0+ln(x)=\lim_{x \to 0^+} \ln(x) = -\infty limx+ln(x)=+\lim_{x \to +\infty} \ln(x) = +\infty

STEP 3

Calculate the limit of f(x)=x22+ln(x)f(x) = x^2 - 2 + \ln(x) as xx approaches 00 from the right.
limx0+f(x)=limx0+(x22+ln(x))\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} (x^2 - 2 + \ln(x))

STEP 4

Since limx0+ln(x)=\lim_{x \to 0^+} \ln(x) = -\infty and limx0+x22\lim_{x \to 0^+} x^2 - 2 is finite, the dominant term is ln(x)\ln(x).
limx0+f(x)=\lim_{x \to 0^+} f(x) = -\infty

STEP 5

Calculate the limit of f(x)=x22+ln(x)f(x) = x^2 - 2 + \ln(x) as xx approaches ++\infty.
limx+f(x)=limx+(x22+ln(x))\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (x^2 - 2 + \ln(x))

STEP 6

As xx approaches ++\infty, both x2x^2 and ln(x)\ln(x) approach ++\infty, but x2x^2 grows much faster than ln(x)\ln(x).
limx+f(x)=+\lim_{x \to +\infty} f(x) = +\infty

STEP 7

Calculate the limit of g(x)=x2+(2ln(x))2g(x) = x^2 + (2 - \ln(x))^2 as xx approaches 00 from the right.
limx0+g(x)=limx0+(x2+(2ln(x))2)\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} \left(x^2 + (2 - \ln(x))^2\right)

STEP 8

Since limx0+ln(x)=\lim_{x \to 0^+} \ln(x) = -\infty, the term (2ln(x))2(2 - \ln(x))^2 will dominate and approach ++\infty.
limx0+g(x)=+\lim_{x \to 0^+} g(x) = +\infty

STEP 9

Calculate the limit of g(x)=x2+(2ln(x))2g(x) = x^2 + (2 - \ln(x))^2 as xx approaches ++\infty.
limx+g(x)=limx+(x2+(2ln(x))2)\lim_{x \to +\infty} g(x) = \lim_{x \to +\infty} \left(x^2 + (2 - \ln(x))^2\right)

STEP 10

As xx approaches ++\infty, x2x^2 grows much faster than ln(x)\ln(x), and the term (2ln(x))2(2 - \ln(x))^2 approaches a constant value.
limx+g(x)=+\lim_{x \to +\infty} g(x) = +\infty

STEP 11

Calculate the limit of h(x)=ln(x+2)1+x2h(x) = \frac{\ln(x + 2)}{1 + x^2} as xx approaches -\infty.
limxh(x)=limxln(x+2)1+x2\lim_{x \to -\infty} h(x) = \lim_{x \to -\infty} \frac{\ln(x + 2)}{1 + x^2}

STEP 12

As xx approaches -\infty, x+2x + 2 approaches -\infty, but since the natural logarithm is not defined for negative numbers, this limit does not exist.
limxh(x) does not exist\lim_{x \to -\infty} h(x) \text{ does not exist}

STEP 13

Calculate the limit of h(x)=ln(x+2)1+x2h(x) = \frac{\ln(x + 2)}{1 + x^2} as xx approaches ++\infty.
limx+h(x)=limx+ln(x+2)1+x2\lim_{x \to +\infty} h(x) = \lim_{x \to +\infty} \frac{\ln(x + 2)}{1 + x^2}

STEP 14

As xx approaches ++\infty, the denominator 1+x21 + x^2 grows much faster than the numerator ln(x+2)\ln(x + 2), leading to the limit being 00.
limx+h(x)=0\lim_{x \to +\infty} h(x) = 0

STEP 15

Calculate the limit of l(x)=x(lnx)2l(x) = x(\ln x)^2 as xx approaches 00 from the right.
limx0+l(x)=limx0+x(lnx)2\lim_{x \to 0^+} l(x) = \lim_{x \to 0^+} x(\ln x)^2

STEP 16

As xx approaches 00 from the right, ln(x)\ln(x) approaches -\infty, but since xx approaches 00, the product x(lnx)2x(\ln x)^2 approaches 00.
limx0+l(x)=0\lim_{x \to 0^+} l(x) = 0

STEP 17

Calculate the limit of l(x)=x(lnx)2l(x) = x(\ln x)^2 as xx approaches ++\infty.
limx+l(x)=limx+x(lnx)2\lim_{x \to +\infty} l(x) = \lim_{x \to +\infty} x(\ln x)^2

STEP 18

As xx approaches ++\infty, both xx and (lnx)2(\ln x)^2 approach ++\infty, so the limit is ++\infty.
limx+l(x)=+\lim_{x \to +\infty} l(x) = +\infty

Was this helpful?
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord