Solved on Mar 03, 2024

Find the magnitude of a force pulling 45.845.8^{\circ} west and the direction of the 166.2N166.2 \mathrm{N} resultant force when a 116N116 \mathrm{N} force pulls due west.

STEP 1

Assumptions
1. The first force, F1F_1, has a magnitude of 116 N116 \mathrm{~N} and is directed due west.
2. The second force, F2F_2, has an unknown magnitude and is directed 45.845.8^{\circ} west of north.
3. The resultant force, FRF_R, has a magnitude of 166.2 N166.2 \mathrm{~N}.
4. The direction of the resultant force is also unknown and is to be expressed as NθW\mathrm{N}\theta^{\circ}\mathrm{W}, where θ\theta is the angle to be found.
5. Forces are vectors and can be added using vector addition.
6. The problem is in two dimensions and can be solved using trigonometry and vector components.

STEP 2

Decompose the first force, F1F_1, into its vector components. Since F1F_1 is directed due west, it only has a component in the westward direction (negative x-axis).
F1x=116 NF_{1x} = -116 \mathrm{~N} F1y=0 NF_{1y} = 0 \mathrm{~N}

STEP 3

Decompose the second force, F2F_2, into its vector components. Since F2F_2 is directed 45.845.8^{\circ} west of north, it has components in both the northward (positive y-axis) and westward (negative x-axis) directions.
F2x=F2cos(45.8)F_{2x} = -|F_2| \cos(45.8^{\circ}) F2y=F2sin(45.8)F_{2y} = |F_2| \sin(45.8^{\circ})

STEP 4

The resultant force, FRF_R, is the vector sum of F1F_1 and F2F_2.
FRx=F1x+F2xF_{Rx} = F_{1x} + F_{2x} FRy=F1y+F2yF_{Ry} = F_{1y} + F_{2y}

STEP 5

Given the magnitude of the resultant force, we can express it in terms of its components.
FR=FRx2+FRy2|F_R| = \sqrt{F_{Rx}^2 + F_{Ry}^2}

STEP 6

Substitute the known values and expressions for the components of FRF_R into the equation for its magnitude.
166.2 N=(116 NF2cos(45.8))2+(F2sin(45.8))2166.2 \mathrm{~N} = \sqrt{(-116 \mathrm{~N} - |F_2| \cos(45.8^{\circ}))^2 + (|F_2| \sin(45.8^{\circ}))^2}

STEP 7

Square both sides of the equation to eliminate the square root.
(166.2 N)2=(116 NF2cos(45.8))2+(F2sin(45.8))2(166.2 \mathrm{~N})^2 = (-116 \mathrm{~N} - |F_2| \cos(45.8^{\circ}))^2 + (|F_2| \sin(45.8^{\circ}))^2

STEP 8

Expand the squares on the right side of the equation.
27624.84 N2=(116 N)2+2116 NF2cos(45.8)+(F2cos(45.8))2+(F2sin(45.8))227624.84 \mathrm{~N}^2 = (116 \mathrm{~N})^2 + 2 \cdot 116 \mathrm{~N} \cdot |F_2| \cos(45.8^{\circ}) + (|F_2| \cos(45.8^{\circ}))^2 + (|F_2| \sin(45.8^{\circ}))^2

STEP 9

Combine like terms and simplify the equation.
27624.84 N2=13456 N2+2116 NF2cos(45.8)+F22(cos2(45.8)+sin2(45.8))27624.84 \mathrm{~N}^2 = 13456 \mathrm{~N}^2 + 2 \cdot 116 \mathrm{~N} \cdot |F_2| \cos(45.8^{\circ}) + |F_2|^2 (\cos^2(45.8^{\circ}) + \sin^2(45.8^{\circ}))

STEP 10

Use the Pythagorean identity cos2(θ)+sin2(θ)=1\cos^2(\theta) + \sin^2(\theta) = 1 to simplify the equation further.
27624.84 N2=13456 N2+2116 NF2cos(45.8)+F2227624.84 \mathrm{~N}^2 = 13456 \mathrm{~N}^2 + 2 \cdot 116 \mathrm{~N} \cdot |F_2| \cos(45.8^{\circ}) + |F_2|^2

STEP 11

Subtract 13456 N213456 \mathrm{~N}^2 from both sides of the equation.
27624.84 N213456 N2=2116 NF2cos(45.8)+F2227624.84 \mathrm{~N}^2 - 13456 \mathrm{~N}^2 = 2 \cdot 116 \mathrm{~N} \cdot |F_2| \cos(45.8^{\circ}) + |F_2|^2

STEP 12

Calculate the left side of the equation.
14168.84 N2=2116 NF2cos(45.8)+F2214168.84 \mathrm{~N}^2 = 2 \cdot 116 \mathrm{~N} \cdot |F_2| \cos(45.8^{\circ}) + |F_2|^2

STEP 13

To find F2|F_2|, we need to solve the quadratic equation. Let's rearrange the terms to get a standard quadratic equation form ax2+bx+c=0ax^2 + bx + c = 0.
F22+2116 Ncos(45.8)F214168.84 N2=0|F_2|^2 + 2 \cdot 116 \mathrm{~N} \cdot \cos(45.8^{\circ}) \cdot |F_2| - 14168.84 \mathrm{~N}^2 = 0

STEP 14

Now we can use the quadratic formula to solve for F2|F_2|.
F2=b±b24ac2a|F_2| = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
Where a=1a = 1, b=2116 Ncos(45.8)b = 2 \cdot 116 \mathrm{~N} \cdot \cos(45.8^{\circ}), and c=14168.84 N2c = -14168.84 \mathrm{~N}^2.

STEP 15

Calculate the value of bb.
b=2116 Ncos(45.8)b = 2 \cdot 116 \mathrm{~N} \cdot \cos(45.8^{\circ})

STEP 16

Calculate the value of b2b^2.
b2=(2116 Ncos(45.8))2b^2 = (2 \cdot 116 \mathrm{~N} \cdot \cos(45.8^{\circ}))^2

STEP 17

Substitute the values of aa, bb, and cc into the quadratic formula.
F2=(2116 Ncos(45.8))±(2116 Ncos(45.8))241(14168.84 N2)21|F_2| = \frac{-(2 \cdot 116 \mathrm{~N} \cdot \cos(45.8^{\circ})) \pm \sqrt{(2 \cdot 116 \mathrm{~N} \cdot \cos(45.8^{\circ}))^2 - 4 \cdot 1 \cdot (-14168.84 \mathrm{~N}^2)}}{2 \cdot 1}

STEP 18

Simplify the expression under the square root (the discriminant).
Δ=(2116 Ncos(45.8))2+414168.84 N2\Delta = (2 \cdot 116 \mathrm{~N} \cdot \cos(45.8^{\circ}))^2 + 4 \cdot 14168.84 \mathrm{~N}^2

STEP 19

Calculate the discriminant, Δ\Delta.
Δ=(2116 Ncos(45.8))2+414168.84 N2\Delta = (2 \cdot 116 \mathrm{~N} \cdot \cos(45.8^{\circ}))^2 + 4 \cdot 14168.84 \mathrm{~N}^2

STEP 20

Substitute the value of the discriminant back into the quadratic formula.
F2=(2116 Ncos(45.8))±Δ2|F_2| = \frac{-(2 \cdot 116 \mathrm{~N} \cdot \cos(45.8^{\circ})) \pm \sqrt{\Delta}}{2}

STEP 21

Since we are looking for a magnitude, which must be positive, we will use the positive square root.
F2=(2116 Ncos(45.8))+Δ2|F_2| = \frac{-(2 \cdot 116 \mathrm{~N} \cdot \cos(45.8^{\circ})) + \sqrt{\Delta}}{2}

STEP 22

Calculate the magnitude of the second force, F2|F_2|.
F2=(2116 Ncos(45.8))+Δ2|F_2| = \frac{-(2 \cdot 116 \mathrm{~N} \cdot \cos(45.8^{\circ})) + \sqrt{\Delta}}{2}

STEP 23

Now that we have the magnitude of the second force, we need to find the direction of the resultant force. The direction can be found by calculating the angle θ\theta for the resultant force using its components.
tan(θ)=FRyFRx\tan(\theta) = \frac{F_{Ry}}{F_{Rx}}

STEP 24

Substitute the expressions for FRxF_{Rx} and FRyF_{Ry}.
tan(θ)=F2sin(45.8)116 NF2cos(45.8)\tan(\theta) = \frac{|F_2| \sin(45.8^{\circ})}{-116 \mathrm{~N} - |F_2| \cos(45.8^{\circ})}

STEP 25

Calculate the angle θ\theta using the arctangent function.
θ=arctan(F2sin(45.8)116 NF2cos(45.8))\theta = \arctan\left(\frac{|F_2| \sin(45.8^{\circ})}{-116 \mathrm{~N} - |F_2| \cos(45.8^{\circ})}\right)

STEP 26

The direction of the resultant force will be north of west, so we need to ensure that the angle θ\theta is positive.
θ=arctan(F2sin(45.8)116 NF2cos(45.8))\theta = \left|\arctan\left(\frac{|F_2| \sin(45.8^{\circ})}{-116 \mathrm{~N} - |F_2| \cos(45.8^{\circ})}\right)\right|

STEP 27

Now we have all the information to write the final answer. Calculate the exact values of F2|F_2| and θ\theta using the equations derived in previous steps.
F2=(2116 Ncos(45.8))+Δ2 N\left|F_{2}\right|=\frac{-(2 \cdot 116 \mathrm{~N} \cdot \cos(45.8^{\circ})) + \sqrt{\Delta}}{2} \mathrm{~N}
θ=arctan(F2sin(45.8)116 NF2cos(45.8))\theta = \left|\arctan\left(\frac{|F_2| \sin(45.8^{\circ})}{-116 \mathrm{~N} - |F_2| \cos(45.8^{\circ})}\right)\right|^{\circ}
The magnitude of the second force is F2\left|F_{2}\right| N, and the direction of the resultant is NθW\mathrm{N}\theta^{\circ} \mathrm{W}.

Was this helpful?
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord