Solved on Feb 22, 2024

Find the derivative of y with respect to x evaluated at x=1 for the following functions: (21) y=2x1x+3y=\frac{2 x-1}{x+3}, (22) y=5x2x2+3y=\frac{5 x-2}{x^{2}+3}, (23) y=(3x+2x)(x5+1)y=\left(\frac{3 x+2}{x}\right)\left(x^{-5}+1\right), (24) y=(2x7x2)(x1x+1)y=\left(2 x^{7}-x^{2}\right)\left(\frac{x-1}{x+1}\right).

STEP 1

Assumptions
1. We need to find the derivative of the given functions with respect to xx.
2. After finding the derivative, we will evaluate it at x=1x=1.
3. We will use the quotient rule for derivatives where necessary: (fg)=fgfgg2\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}.
4. We will use the product rule for derivatives where necessary: (fg)=fg+fg(fg)' = f'g + fg'.
5. We will apply the power rule for derivatives where necessary: (xn)=nxn1(x^n)' = nx^{n-1}.

STEP 2

Find the derivative of y=2x1x+3y=\frac{2x-1}{x+3} with respect to xx.
y=(2x1x+3)y' = \left(\frac{2x-1}{x+3}\right)'

STEP 3

Apply the quotient rule.
y=(2x1)(x+3)(2x1)(x+3)(x+3)2y' = \frac{(2x-1)'(x+3) - (2x-1)(x+3)'}{(x+3)^2}

STEP 4

Differentiate 2x12x-1 and x+3x+3.
(2x1)=2(2x-1)' = 2 (x+3)=1(x+3)' = 1

STEP 5

Substitute the derivatives into the quotient rule.
y=2(x+3)(2x1)(1)(x+3)2y' = \frac{2(x+3) - (2x-1)(1)}{(x+3)^2}

STEP 6

Expand and simplify the numerator.
y=2x+62x+1(x+3)2y' = \frac{2x + 6 - 2x + 1}{(x+3)^2}

STEP 7

Combine like terms in the numerator.
y=7(x+3)2y' = \frac{7}{(x+3)^2}

STEP 8

Evaluate the derivative at x=1x=1.
dydxx=1=7(1+3)2\left.\frac{dy}{dx}\right|_{x=1} = \frac{7}{(1+3)^2}

STEP 9

Calculate the value of the derivative at x=1x=1.
dydxx=1=716\left.\frac{dy}{dx}\right|_{x=1} = \frac{7}{16}

STEP 10

Find the derivative of y=5x2x2+3y=\frac{5x-2}{x^2+3} with respect to xx.
y=(5x2x2+3)y' = \left(\frac{5x-2}{x^2+3}\right)'

STEP 11

Apply the quotient rule.
y=(5x2)(x2+3)(5x2)(x2+3)(x2+3)2y' = \frac{(5x-2)'(x^2+3) - (5x-2)(x^2+3)'}{(x^2+3)^2}

STEP 12

Differentiate 5x25x-2 and x2+3x^2+3.
(5x2)=5(5x-2)' = 5 (x2+3)=2x(x^2+3)' = 2x

STEP 13

Substitute the derivatives into the quotient rule.
y=5(x2+3)(5x2)(2x)(x2+3)2y' = \frac{5(x^2+3) - (5x-2)(2x)}{(x^2+3)^2}

STEP 14

Expand and simplify the numerator.
y=5x2+1510x2+4x(x2+3)2y' = \frac{5x^2 + 15 - 10x^2 + 4x}{(x^2+3)^2}

STEP 15

Combine like terms in the numerator.
y=5x2+4x+15(x2+3)2y' = \frac{-5x^2 + 4x + 15}{(x^2+3)^2}

STEP 16

Evaluate the derivative at x=1x=1.
dydxx=1=5(1)2+4(1)+15(12+3)2\left.\frac{dy}{dx}\right|_{x=1} = \frac{-5(1)^2 + 4(1) + 15}{(1^2+3)^2}

STEP 17

Calculate the value of the derivative at x=1x=1.
dydxx=1=5+4+1516\left.\frac{dy}{dx}\right|_{x=1} = \frac{-5 + 4 + 15}{16}

STEP 18

Simplify the numerator.
dydxx=1=1416\left.\frac{dy}{dx}\right|_{x=1} = \frac{14}{16}

STEP 19

Reduce the fraction.
dydxx=1=78\left.\frac{dy}{dx}\right|_{x=1} = \frac{7}{8}

STEP 20

Find the derivative of y=(3x+2x)(x5+1)y=\left(\frac{3x+2}{x}\right)\left(x^{-5}+1\right) with respect to xx.
y=((3x+2x)(x5+1))y' = \left(\left(\frac{3x+2}{x}\right)\left(x^{-5}+1\right)\right)'

STEP 21

Apply the product rule.
y=(3x+2x)(x5+1)+(3x+2x)(x5+1)y' = \left(\frac{3x+2}{x}\right)'\left(x^{-5}+1\right) + \left(\frac{3x+2}{x}\right)\left(x^{-5}+1\right)'

STEP 22

Apply the quotient rule to (3x+2x)\left(\frac{3x+2}{x}\right)' and the power rule to (x5+1)\left(x^{-5}+1\right)'.
y=(3x+2)x(3x+2)xx2(x5+1)+(3x+2x)(x5+1)y' = \frac{(3x+2)'x - (3x+2)x'}{x^2}\left(x^{-5}+1\right) + \left(\frac{3x+2}{x}\right)(x^{-5}+1)'

STEP 23

Differentiate 3x+23x+2, xx, and x5+1x^{-5}+1.
(3x+2)=3(3x+2)' = 3 x=1x' = 1 (x5+1)=5x6(x^{-5}+1)' = -5x^{-6}

STEP 24

Substitute the derivatives into the product and quotient rules.
y=3x(3x+2)x2(x5+1)+(3x+2x)(5x6)y' = \frac{3x - (3x+2)}{x^2}\left(x^{-5}+1\right) + \left(\frac{3x+2}{x}\right)(-5x^{-6})

STEP 25

Expand and simplify the expressions.
y=3x3x2x2(x5+1)+(3x+2x)(5x6)y' = \frac{3x - 3x - 2}{x^2}\left(x^{-5}+1\right) + \left(\frac{3x+2}{x}\right)(-5x^{-6})

STEP 26

Combine like terms and simplify the fractions.
y=2x2(x5+1)5(3x+2)x7y' = \frac{-2}{x^2}\left(x^{-5}+1\right) - \frac{5(3x+2)}{x^7}

STEP 27

Evaluate the derivative at x=1x=1.
dydxx=1=212(15+1)5(3(1)+2)17\left.\frac{dy}{dx}\right|_{x=1} = \frac{-2}{1^2}\left(1^{-5}+1\right) - \frac{5(3(1)+2)}{1^7}

STEP 28

Calculate the value of the derivative at x=1x=1.
dydxx=1=2(1+1)5(3+2)\left.\frac{dy}{dx}\right|_{x=1} = -2(1+1) - 5(3+2)

STEP 29

Simplify the expression.
dydxx=1=2(2)5(5)\left.\frac{dy}{dx}\right|_{x=1} = -2(2) - 5(5)
dydxx=1=425\left.\frac{dy}{dx}\right|_{x=1} = -4 - 25
dydxx=1=29\left.\frac{dy}{dx}\right|_{x=1} = -29

STEP 30

Find the derivative of y=(2x7x2)(x1x+1)y=\left(2x^7-x^2\right)\left(\frac{x-1}{x+1}\right) with respect to xx.
y=((2x7x2)(x1x+1))y' = \left(\left(2x^7-x^2\right)\left(\frac{x-1}{x+1}\right)\right)'

STEP 31

Apply the product rule.
y=(2x7x2)(x1x+1)+(2x7x2)(x1x+1)y' = (2x^7-x^2)'\left(\frac{x-1}{x+1}\right) + (2x^7-x^2)\left(\frac{x-1}{x+1}\right)'

STEP 32

Apply the power rule to (2x7x2)(2x^7-x^2)' and the quotient rule to (x1x+1)\left(\frac{x-1}{x+1}\right)'.
y=(14x62x)(x1x+1)+(2x7x2)((x1)(x+1)(x1)(x+1)(x+1)2)y' = (14x^6-2x)\left(\frac{x-1}{x+1}\right) + (2x^7-x^2)\left(\frac{(x-1)'(x+1) - (x-1)(x+1)'}{(x+1)^2}\right)

STEP 33

Differentiate x1x-1 and x+1x+1.
(x1)=1(x-1)' = 1 (x+1)=1(x+1)' = 1

STEP 34

Substitute the derivatives into the product and quotient rules.
y=(14x62x)(x1x+1)+(2x7x2)(1(x+1)(x1)(1)(x+1)2)y' = (14x^6-2x)\left(\frac{x-1}{x+1}\right) + (2x^7-x^2)\left(\frac{1(x+1) - (x-1)(1)}{(x+1)^2}\right)

STEP 35

Expand and simplify the expressions.
y=(14x62x)(x1x+1)+(2x7x2)(x+1x+1(x+1)2)y' = (14x^6-2x)\left(\frac{x-1}{x+1}\right) + (2x^7-x^2)\left(\frac{x+1 - x + 1}{(x+1)^2}\right)

STEP 36

Combine like terms and simplify the fractions.
y=(14x62x)(x1x+1)+(2x7x2)(2(x+1)2)y' = (14x^6-2x)\left(\frac{x-1}{x+1}\right) + (2x^7-x^2)\left(\frac{2}{(x+1)^2}\right)

STEP 37

Evaluate the derivative at x=1x=1.
dydxx=1=(14(1)62(1))(111+1)+(2(1)7(1)2)(2(1+1)2)\left.\frac{dy}{dx}\right|_{x=1} = (14(1)^6-2(1))\left(\frac{1-1}{1+1}\right) + (2(1)^7-(1)^2)\left(\frac{2}{(1+1)^2}\right)

STEP 38

Calculate the value of the derivative at x=1x=1.
dydxx=1=(142)(02)+(21)(24)\left.\frac{dy}{dx}\right|_{x=1} = (14-2)\left(\frac{0}{2}\right) + (2-1)\left(\frac{2}{4}\right)

STEP 39

Simplify the expression.
dydxx=1=0+24\left.\frac{dy}{dx}\right|_{x=1} = 0 + \frac{2}{4}
dydxx=1=12\left.\frac{dy}{dx}\right|_{x=1} = \frac{1}{2}
The derivatives of the functions at x=1x=1 are:
For 21. dydxx=1=716\left.\frac{dy}{dx}\right|_{x=1} = \frac{7}{16}
For 22. dydxx=1=78\left.\frac{dy}{dx}\right|_{x=1} = \frac{7}{8}
For 23. dydxx=1=29\left.\frac{dy}{dx}\right|_{x=1} = -29
For 24. dydxx=1=12\left.\frac{dy}{dx}\right|_{x=1} = \frac{1}{2}

Was this helpful?
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ContactInfluencer programPolicyTerms
TwitterInstagramFacebookTikTokDiscord