Get Started for Free
Overview
Archive
Sign In
Math
Arithmetic
Fractions and Decimals
Measurement
Geometry
Word Problems
Algebra
Calculus
Statistics
Probability
Number Theory
Discrete Mathematics
Linear Algebra
Differential Equations
Trigonometry
Finance
Data
Graph
Diagram & Picture
Math Statement
Expression
Equation
Inequality
System
Matrix
Vector
Set
Function
Sequence
Series
Vector Space
Distribution
Solve
Simplify
Model
Prove
Analyze
Numbers & Operations
Data & Statistics
Discrete
Natural Numbers
Fractions
Decimals
Integers
Rationals
Percentages
Ratios & Proportions
Order of Operations
Linearity
Absolute Value
Quadratics
Rational
Exponents & Radicals
Polynomials
Exponentials
Logarithms
Matrices
Complex Numbers
Angles
Triangles
Circles
Congruence & Similarity
Pythagorean Theorem
Mensuration
Transformations
Coordinates
Data Collection & Representation
Measures of Central Tendency
Measures of Spread
Statistical Inference
Right Triangle
Non-Right Triangle
Unit Circle & Radians
Identities & Equations
Applications
Limits & Continuity
Derivatives
Integrals
Combinatorics
Word Problem
Sequences & Series
Archive
Math
Problem 56801
Find the total sugar in tons from
2
3
8
2 \frac{3}{8}
2
8
3
containers, each holding
3
1
5
3 \frac{1}{5}
3
5
1
tons. Express as a mixed number.
See Solution
Problem 56802
Find
f
f
f
for the integral
∫
x
x
+
4
d
x
\int x \sqrt{x+4} dx
∫
x
x
+
4
d
x
using the substitution
u
=
x
+
4
u=x+4
u
=
x
+
4
, so
∫
f
(
u
)
d
u
\int f(u) du
∫
f
(
u
)
d
u
.
f
(
u
)
=
f(u)=
f
(
u
)
=
See Solution
Problem 56803
Evaluate the integral using substitution:
∫
x
6
x
7
−
4
d
x
=
C
\int \frac{x^{6}}{\sqrt{x^{7}-4}} d x = C
∫
x
7
−
4
x
6
d
x
=
C
.
See Solution
Problem 56804
Graph the line represented by the equation
−
3
x
+
y
=
−
9
-3x + y = -9
−
3
x
+
y
=
−
9
.
See Solution
Problem 56805
Evaluate the integral using substitution:
∫
7
x
3
cos
(
4
x
4
)
d
x
=
C
\int 7 x^{3} \cos(4 x^{4}) \, dx = C
∫
7
x
3
cos
(
4
x
4
)
d
x
=
C
.
See Solution
Problem 56806
Find
f
(
g
(
x
)
)
f(g(x))
f
(
g
(
x
))
for
f
(
x
)
=
5
2
x
+
1
f(x)=\frac{5}{2 x+1}
f
(
x
)
=
2
x
+
1
5
and
g
(
x
)
=
x
2
−
3
g(x)=x^{2}-3
g
(
x
)
=
x
2
−
3
. Identify Olivia's mistake and correct her work.
See Solution
Problem 56807
Find
∂
f
∂
x
\frac{\partial f}{\partial x}
∂
x
∂
f
,
∂
f
∂
y
\frac{\partial f}{\partial y}
∂
y
∂
f
, and evaluate at (1,-1) for
f
(
x
,
y
)
=
6
x
e
5
x
y
f(x, y)=6 x e^{5 x y}
f
(
x
,
y
)
=
6
x
e
5
x
y
.
See Solution
Problem 56808
Solve for t in the equation:
1
=
p
r
t
1 = p r t
1
=
p
r
t
See Solution
Problem 56809
Evaluate the integral using substitution:
∫
−
x
(
5
−
8
x
)
5
d
x
=
\int -x(5-8x)^{5} dx =
∫
−
x
(
5
−
8
x
)
5
d
x
=
See Solution
Problem 56810
Evaluate the integral:
∫
x
6
(
x
7
+
5
)
7
d
x
=
\int \frac{x^{6}}{(x^{7}+5)^{7}} \, dx =
∫
(
x
7
+
5
)
7
x
6
d
x
=
See Solution
Problem 56811
Bella bought 1 container each of 12 ounces of blackberries, raspberries, and strawberries. How many ounces are left after baking?
See Solution
Problem 56812
Evaluate the integral from 0 to 1:
∫
0
1
6
x
4
(
1
−
x
5
)
3
d
x
=
\int_{0}^{1} 6 x^{4}\left(1-x^{5}\right)^{3} d x=
∫
0
1
6
x
4
(
1
−
x
5
)
3
d
x
=
See Solution
Problem 56813
Evaluate the integral:
∫
−
3
sin
(
x
)
cos
(
x
)
d
x
=
\int -3 \sin(x) \sqrt{\cos(x)} \, dx =
∫
−
3
sin
(
x
)
cos
(
x
)
d
x
=
See Solution
Problem 56814
Evaluate the integral using substitution:
∫
cos
(
x
)
(
13
−
cos
(
x
)
)
8
sin
(
x
)
d
x
=
\int \cos (x)(13-\cos (x))^{8} \sin (x) d x =
∫
cos
(
x
)
(
13
−
cos
(
x
)
)
8
sin
(
x
)
d
x
=
See Solution
Problem 56815
Solve for
x
x
x
in the equation
x
−
2
2
=
m
+
n
\frac{x-2}{2}=m+n
2
x
−
2
=
m
+
n
.
See Solution
Problem 56816
Find the second partial derivatives
f
x
x
(
x
,
y
)
,
f
y
y
(
x
,
y
)
,
f
x
y
(
x
,
y
)
,
f
y
x
(
x
,
y
)
f_{xx}(x, y), f_{yy}(x, y), f_{xy}(x, y), f_{yx}(x, y)
f
xx
(
x
,
y
)
,
f
yy
(
x
,
y
)
,
f
x
y
(
x
,
y
)
,
f
y
x
(
x
,
y
)
for
f
(
x
,
y
)
=
7
x
2
y
f(x, y)=7x^2y
f
(
x
,
y
)
=
7
x
2
y
and evaluate at
(
1
,
−
1
)
(1,-1)
(
1
,
−
1
)
.
See Solution
Problem 56817
Find the
x
x
x
and
y
y
y
intercepts of the line given by the equation
2
x
−
4
y
=
8
2x - 4y = 8
2
x
−
4
y
=
8
.
See Solution
Problem 56818
Rita has 8.64 pounds of seed. If 7.2 pounds plants 1 acre, how many acres can she plant?
See Solution
Problem 56819
Evaluate the integral:
∫
−
π
/
2
π
/
2
sin
6
(
x
)
cos
(
x
)
d
x
.
\int_{-\pi / 2}^{\pi / 2} \sin ^{6}(x) \cos (x) d x.
∫
−
π
/2
π
/2
sin
6
(
x
)
cos
(
x
)
d
x
.
See Solution
Problem 56820
Rita has 8.64 pounds of seed. If 7.2 pounds plants 1 acre, how many acres can she plant? Calculate:
8.64
7.2
\frac{8.64}{7.2}
7.2
8.64
.
See Solution
Problem 56821
Find the
x
x
x
-intercept and
y
y
y
-intercept of the line defined by
x
+
2
y
=
8
x + 2y = 8
x
+
2
y
=
8
.
See Solution
Problem 56822
Evaluate the integral using substitution:
∫
7
sin
2
(
4
x
)
cos
3
(
4
x
)
d
x
.
\int 7 \sin ^{2}(4 x) \cos ^{3}(4 x) d x.
∫
7
sin
2
(
4
x
)
cos
3
(
4
x
)
d
x
.
See Solution
Problem 56823
Solve for
r
2
r_{2}
r
2
in the equation
R
(
r
1
+
r
2
)
=
r
1
r
2
R(r_{1}+r_{2})=r_{1} r_{2}
R
(
r
1
+
r
2
)
=
r
1
r
2
.
See Solution
Problem 56824
Find the
y
y
y
-intercept and
x
x
x
-intercept of the line given by
6
x
−
5
y
=
−
30
6x - 5y = -30
6
x
−
5
y
=
−
30
.
See Solution
Problem 56825
Graph the line with slope
4
3
\frac{4}{3}
3
4
and a
y
y
y
-intercept of 1.
See Solution
Problem 56826
Evaluate the integral using substitution:
∫
5
t
sin
(
t
2
)
cos
(
t
2
)
d
t
=
\int 5 t \sin(t^{2}) \cos(t^{2}) \, dt =
∫
5
t
sin
(
t
2
)
cos
(
t
2
)
d
t
=
See Solution
Problem 56827
Find the slope-intercept form of a line with slope -2 and
y
y
y
-intercept -3.
See Solution
Problem 56828
Find the partial derivatives
∂
f
∂
x
\frac{\partial f}{\partial x}
∂
x
∂
f
,
∂
f
∂
y
\frac{\partial f}{\partial y}
∂
y
∂
f
, and evaluate at
(
1
,
−
1
)
(1,-1)
(
1
,
−
1
)
for
f
(
x
,
y
)
=
13
,
000
−
30
x
+
20
y
+
8
x
y
f(x, y)=13,000-30 x+20 y+8 x y
f
(
x
,
y
)
=
13
,
000
−
30
x
+
20
y
+
8
x
y
.
See Solution
Problem 56829
Graph the line with a y-intercept of 4 and a slope of 2.
See Solution
Problem 56830
Find the general antiderivative of
d
y
d
x
=
7
e
x
+
4
\frac{d y}{d x}=7 e^{x}+4
d
x
d
y
=
7
e
x
+
4
. Antiderivative
=
=
=
+
C
+C
+
C
.
See Solution
Problem 56831
Find the antiderivative for
d
x
d
t
=
2
e
t
−
3
\frac{d x}{d t}=2 e^{t}-3
d
t
d
x
=
2
e
t
−
3
with the condition
x
(
0
)
=
4
x(0)=4
x
(
0
)
=
4
. What is
x
x
x
?
See Solution
Problem 56832
Find the antiderivatives of
d
x
d
t
=
2
t
−
1
+
5
\frac{d x}{d t}=2 t^{-1}+5
d
t
d
x
=
2
t
−
1
+
5
. What is
x
x
x
? Include the constant
C
C
C
.
See Solution
Problem 56833
Find the function
f
(
x
)
f(x)
f
(
x
)
given
f
′
′
′
(
x
)
=
e
x
f^{\prime \prime \prime}(x)=e^{x}
f
′′′
(
x
)
=
e
x
,
f
′
′
(
0
)
=
6
f^{\prime \prime}(0)=6
f
′′
(
0
)
=
6
,
f
′
(
0
)
=
10
f^{\prime}(0)=10
f
′
(
0
)
=
10
.
See Solution
Problem 56834
Find an antiderivative of
f
(
x
)
=
2
x
−
10
e
x
f(x)=\frac{2}{x}-10 e^{x}
f
(
x
)
=
x
2
−
10
e
x
.
See Solution
Problem 56835
A crew built a 9 km road in
5
1
4
5 \frac{1}{4}
5
4
1
days. How many km did they build daily? Answer as a mixed number.
See Solution
Problem 56836
Write the slope-intercept equation for a line with slope 5 and
y
y
y
-intercept -3.
See Solution
Problem 56837
Graph the line given by the equation
y
=
−
4
x
y = -4x
y
=
−
4
x
.
See Solution
Problem 56838
Find the function
f
(
x
)
f(x)
f
(
x
)
where
f
′
(
x
)
=
9
x
f'(x)=9^{x}
f
′
(
x
)
=
9
x
and
f
(
4
)
=
−
5
f(4)=-5
f
(
4
)
=
−
5
. What is
f
(
x
)
f(x)
f
(
x
)
?
See Solution
Problem 56839
Evaluate the integral
∫
−
2
8
f
(
x
)
d
x
\int_{-2}^{8} f(x) dx
∫
−
2
8
f
(
x
)
d
x
where
f
(
x
)
=
x
f(x)=x
f
(
x
)
=
x
for
x
<
1
x<1
x
<
1
and
f
(
x
)
=
1
x
f(x)=\frac{1}{x}
f
(
x
)
=
x
1
for
x
≥
1
x \geq 1
x
≥
1
.
See Solution
Problem 56840
Graph the line represented by the equation
y
=
2
x
y = 2x
y
=
2
x
.
See Solution
Problem 56841
Calculate the slope of the line through points (2,2) and (-3,4) using the formula
y
2
−
y
1
x
2
−
x
1
\frac{y_2 - y_1}{x_2 - x_1}
x
2
−
x
1
y
2
−
y
1
.
See Solution
Problem 56842
Calculate the area between
f
(
x
)
=
3
−
x
f(x)=3^{-x}
f
(
x
)
=
3
−
x
and
f
(
x
)
=
0
f(x)=0
f
(
x
)
=
0
for
x
x
x
in
[
2
,
7
]
[2,7]
[
2
,
7
]
using integration. Provide the exact value.
See Solution
Problem 56843
Calculate the area between
f
(
x
)
=
3
−
x
f(x)=3^{-x}
f
(
x
)
=
3
−
x
and
f
(
x
)
=
0
f(x)=0
f
(
x
)
=
0
from
x
=
2
x=2
x
=
2
to
x
=
7
x=7
x
=
7
using integration. Provide the exact answer.
See Solution
Problem 56844
Find the circumference of a circle with radius
r
=
6.9
f
t
r=6.9 \mathrm{ft}
r
=
6.9
ft
.
See Solution
Problem 56845
Find the slope of the line through (0,-2) and (1,1). Use the formula
m
=
y
2
−
y
1
x
2
−
x
1
m = \frac{y_2 - y_1}{x_2 - x_1}
m
=
x
2
−
x
1
y
2
−
y
1
.
See Solution
Problem 56846
What level of differences in the sequence
1
,
2
,
…
,
n
1, 2, \ldots, n
1
,
2
,
…
,
n
is constant based on the sum formula
n
(
n
+
1
)
2
\frac{n(n+1)}{2}
2
n
(
n
+
1
)
?
See Solution
Problem 56847
Find the product of the polynomials
(
2
x
3
+
3
x
2
)
(
4
x
4
−
5
x
3
−
6
x
2
)
(2 x^{3}+3 x^{2})(4 x^{4}-5 x^{3}-6 x^{2})
(
2
x
3
+
3
x
2
)
(
4
x
4
−
5
x
3
−
6
x
2
)
.
See Solution
Problem 56848
Calculate the product of
(
2
q
9
+
3
q
7
)
(
−
6
q
2
+
9
)
(2q^9 + 3q^7)(-6q^2 + 9)
(
2
q
9
+
3
q
7
)
(
−
6
q
2
+
9
)
. What is the result?
See Solution
Problem 56849
Identify the sequence with constant second differences from these options:
{
−
0.5
,
5
,
13.5
,
23
}
\{-0.5,5,13.5,23\}
{
−
0.5
,
5
,
13.5
,
23
}
,
{
5
,
11.5
,
18.5
,
24.5
}
\{5,11.5,18.5,24.5\}
{
5
,
11.5
,
18.5
,
24.5
}
,
{
0.5
,
5
,
12.5
,
23
}
\{0.5,5,12.5,23\}
{
0.5
,
5
,
12.5
,
23
}
,
{
5
,
13.5
,
23
,
34.5
}
\{5,13.5,23,34.5\}
{
5
,
13.5
,
23
,
34.5
}
.
See Solution
Problem 56850
What is the simplified form of
−
10
x
2
+
20
x
+
80
x
+
2
\frac{-10 x^{2}+20 x+80}{x+2}
x
+
2
−
10
x
2
+
20
x
+
80
? Choices:
−
10
x
+
40
-10 x+40
−
10
x
+
40
,
x
−
4
x-4
x
−
4
,
x
+
4
x+4
x
+
4
,
10
x
−
40
10 x-40
10
x
−
40
.
See Solution
Problem 56851
Find the circumference of a circle with diameter
d
=
8.2
f
t
d=8.2 \mathrm{ft}
d
=
8.2
ft
.
See Solution
Problem 56852
Calculate the slope of the line through the points (-3, -2) and (1, 2) using the formula
y
2
−
y
1
x
2
−
x
1
\frac{y_2 - y_1}{x_2 - x_1}
x
2
−
x
1
y
2
−
y
1
.
See Solution
Problem 56853
Use long division to find which polynomial divides evenly by
x
+
3
x+3
x
+
3
:
1.
x
3
−
5
x
2
+
10
x
−
15
x^{3}-5 x^{2}+10 x-15
x
3
−
5
x
2
+
10
x
−
15
2.
x
3
−
3
x
2
−
13
x
+
15
x^{3}-3 x^{2}-13 x+15
x
3
−
3
x
2
−
13
x
+
15
3.
3
x
2
−
6
x
+
9
3 x^{2}-6 x+9
3
x
2
−
6
x
+
9
4.
5
x
2
+
7
x
−
12
5 x^{2}+7 x-12
5
x
2
+
7
x
−
12
See Solution
Problem 56854
Solve the inequality and graph the solution:
−
18
−
5
y
≥
52
-18 - 5y \geq 52
−
18
−
5
y
≥
52
.
See Solution
Problem 56855
Find the circumference of a circle with diameter
d
=
7
m
d=7 \mathrm{~m}
d
=
7
m
.
See Solution
Problem 56856
Evaluate the integral of
y
=
7
x
e
−
x
y=7xe^{-x}
y
=
7
x
e
−
x
from
x
=
2
x=2
x
=
2
to
x
x
x
.
See Solution
Problem 56857
Calculate the slope of the line through the points (-1,-4) and (-4,3) using the formula
y
2
−
y
1
x
2
−
x
1
\frac{y_2 - y_1}{x_2 - x_1}
x
2
−
x
1
y
2
−
y
1
.
See Solution
Problem 56858
Calculate the circumference of a circle with diameter
d
=
6.8
m
m
d=6.8 \mathrm{~mm}
d
=
6.8
mm
.
See Solution
Problem 56859
Find the area of a circle with a radius of
r
=
7.1
r=7.1
r
=
7.1
yd.
See Solution
Problem 56860
Calculate the slope of the line connecting the points
(
−
4
,
−
1
)
(-4, -1)
(
−
4
,
−
1
)
and
(
−
4
,
3
)
(-4, 3)
(
−
4
,
3
)
.
See Solution
Problem 56861
Calculate the volume
V
V
V
of the solid formed by rotating the area under
y
=
4
x
2
y=\frac{4}{x^{2}}
y
=
x
2
4
from
x
=
1
x=1
x
=
1
to
x
=
∞
x=\infty
x
=
∞
around the
x
\mathrm{x}
x
-axis.
V
=
V=
V
=
See Solution
Problem 56862
Use long division to find which polynomial divides evenly by
x
+
3
x+3
x
+
3
:
1.
x
3
−
5
x
2
+
10
x
−
15
x^{3}-5 x^{2}+10 x-15
x
3
−
5
x
2
+
10
x
−
15
2.
x
3
−
3
x
2
−
13
x
+
15
x^{3}-3 x^{2}-13 x+15
x
3
−
3
x
2
−
13
x
+
15
3.
3
x
2
−
6
x
+
9
3 x^{2}-6 x+9
3
x
2
−
6
x
+
9
4.
5
x
2
+
7
x
−
12
5 x^{2}+7 x-12
5
x
2
+
7
x
−
12
See Solution
Problem 56863
Rewrite
x
2
−
196
x^{2}-196
x
2
−
196
using the identity
x
2
−
a
2
=
(
x
+
a
)
(
x
−
a
)
x^{2}-a^{2}=(x+a)(x-a)
x
2
−
a
2
=
(
x
+
a
)
(
x
−
a
)
. Which polynomial is established?
See Solution
Problem 56864
Calculate the slope between the points (3, -4) and (-4, -1) using the formula
y
2
−
y
1
x
2
−
x
1
\frac{y_2 - y_1}{x_2 - x_1}
x
2
−
x
1
y
2
−
y
1
.
See Solution
Problem 56865
Find the volume
V
V
V
of the solid formed by revolving the area under
y
=
10
e
−
x
y=10 e^{-x}
y
=
10
e
−
x
in the first quadrant around the
y
y
y
-axis.
See Solution
Problem 56866
Which polynomial approximates
(
4
x
3
+
5
)
(
3
x
6
−
8
x
2
)
2
x
2
+
8
x
−
4
+
4
x
3
−
2
x
+
13
\frac{(4 x^{3}+5)(3 x^{6}-8 x^{2})}{2 x^{2}+8 x-4}+4 x^{3}-2 x+13
2
x
2
+
8
x
−
4
(
4
x
3
+
5
)
(
3
x
6
−
8
x
2
)
+
4
x
3
−
2
x
+
13
? Options:
12
x
7
−
27
12 x^{7}-27
12
x
7
−
27
,
6
x
7
+
15
6 x^{7}+15
6
x
7
+
15
,
6
x
7
+
13
6 x^{7}+13
6
x
7
+
13
,
6
x
7
−
7
6 x^{7}-7
6
x
7
−
7
.
See Solution
Problem 56867
Bianca's towel is 16 ft by 28 ft. Use the difference of two squares to find its area. Which expression is correct?
2
8
2
−
1
6
2
28^{2}-16^{2}
2
8
2
−
1
6
2
See Solution
Problem 56868
Identify the expression showing that 127 is a Mersenne prime:
2
7
+
1
2^{7}+1
2
7
+
1
,
2
(
63
)
+
1
2(63)+1
2
(
63
)
+
1
,
2
7
−
1
2^{7}-1
2
7
−
1
, or
2
(
64
)
−
1
2(64)-1
2
(
64
)
−
1
.
See Solution
Problem 56869
A diver runs at
3.60
m
/
s
3.60 \mathrm{~m/s}
3.60
m/s
and dives from a cliff, hitting the water 2.00 s later. Find the horizontal distance traveled.
See Solution
Problem 56870
Calculate the area under the curve
y
=
7
x
e
−
x
y=7 x e^{-x}
y
=
7
x
e
−
x
for
x
x
x
values starting from 2.
See Solution
Problem 56871
Calculate the slope of the line through the points
(
−
1
,
1
)
(-1,1)
(
−
1
,
1
)
and
(
−
4
,
−
3
)
(-4,-3)
(
−
4
,
−
3
)
.
See Solution
Problem 56872
A swimmer jumps out at
2.30
m
/
s
2.30 \mathrm{~m/s}
2.30
m/s
and lands in 1.50s. How far from the block does he land?
See Solution
Problem 56873
Find a value of the Pythagorean triple using
x
=
18
x=18
x
=
18
and
y
=
9
y=9
y
=
9
with the identity
(
x
2
+
y
2
)
2
=
(
x
2
−
y
2
)
2
+
(
2
x
y
)
2
(x^{2}+y^{2})^{2}=(x^{2}-y^{2})^{2}+(2xy)^{2}
(
x
2
+
y
2
)
2
=
(
x
2
−
y
2
)
2
+
(
2
x
y
)
2
. Options: 162, 81, 324, 729.
See Solution
Problem 56874
Select numbers that round to 76.73 to the nearest hundredth: {76.732, 76.731, 76.736, 76.737, 76.739}.
See Solution
Problem 56875
Find the third term in the expansion of
(
a
+
5
)
5
(a+5)^{5}
(
a
+
5
)
5
using Pascal's Triangle.
See Solution
Problem 56876
Find the slope between points (-5,8) and (-5,-5), then between (-9,-9) and (2,-9).
See Solution
Problem 56877
Given
f
(
x
)
=
5
x
2
−
x
+
2
f(x)=5 x^{2}-x+2
f
(
x
)
=
5
x
2
−
x
+
2
, find
f
(
−
a
)
f(-a)
f
(
−
a
)
,
f
(
a
+
1
)
f(a+1)
f
(
a
+
1
)
,
2
f
(
a
)
2 f(a)
2
f
(
a
)
,
f
(
2
a
)
f(2 a)
f
(
2
a
)
,
f
(
a
2
)
f(a^{2})
f
(
a
2
)
,
[
f
(
a
)
]
2
[f(a)]^{2}
[
f
(
a
)
]
2
, and
f
(
a
+
h
)
f(a+h)
f
(
a
+
h
)
.
See Solution
Problem 56878
Select numbers that round to 76.73 to the nearest hundredth: a) 76.732 b) 76.731 c) 76.736 d) 76.737 e) 76.739
See Solution
Problem 56879
Find the slope of the line through points
(
−
5
,
8
)
(-5,8)
(
−
5
,
8
)
and
(
−
5
,
−
5
)
(-5,-5)
(
−
5
,
−
5
)
. What is the slope?
See Solution
Problem 56880
Find a term in the expansion of
(
a
+
b
)
7
(a+b)^{7}
(
a
+
b
)
7
using the Binomial Theorem. Options include
21
a
6
b
21 a^{6} b
21
a
6
b
,
21
a
2
b
4
21 a^{2} b^{4}
21
a
2
b
4
,
21
a
2
b
5
21 a^{2} b^{5}
21
a
2
b
5
,
a
4
b
3
a^{4} b^{3}
a
4
b
3
.
See Solution
Problem 56881
Which number rounds to 25.34 when rounded to the nearest hundredths? a) 25.321 b) 25.344 c) 25.348 d) 25.356
See Solution
Problem 56882
Find a Pythagorean triple using
(
1
1
2
+
4
2
)
2
=
(
1
1
2
−
4
2
)
2
+
(
2
⋅
11
⋅
4
)
2
\left(11^{2}+4^{2}\right)^{2}=\left(11^{2}-4^{2}\right)^{2}+(2 \cdot 11 \cdot 4)^{2}
(
1
1
2
+
4
2
)
2
=
(
1
1
2
−
4
2
)
2
+
(
2
⋅
11
⋅
4
)
2
. Which value is in the triple?
See Solution
Problem 56883
A cannonball is fired horizontally from an 80 m cliff at 80 m/s. How far does it travel horizontally before hitting the ground?
See Solution
Problem 56884
Which number rounds to 25.34 when rounded to the nearest hundredths? a) 25.321 b) 25.344 c) 25.348 d) 25.356
See Solution
Problem 56885
Find the second term in the expansion of
(
2
x
−
3
)
6
(2x - 3)^{6}
(
2
x
−
3
)
6
using the Binomial Theorem.
See Solution
Problem 56886
Find the slope of the line through
(
−
5
,
1
)
(-5,1)
(
−
5
,
1
)
and
(
−
5
,
7
)
(-5,7)
(
−
5
,
7
)
, then through
(
8
,
4
)
(8,4)
(
8
,
4
)
and
(
8
,
−
4
)
(8,-4)
(
8
,
−
4
)
.
See Solution
Problem 56887
Construct a polynomial for a sequence with constant 4th differences of 48. (4 points)
See Solution
Problem 56888
Find the slope of the line through
(
4
,
−
6
)
(4,-6)
(
4
,
−
6
)
and
(
−
4
,
−
6
)
(-4,-6)
(
−
4
,
−
6
)
. Then find the slope through
(
−
5
,
3
)
(-5,3)
(
−
5
,
3
)
and
(
9
,
3
)
(9,3)
(
9
,
3
)
.
See Solution
Problem 56889
A boulder is launched from a 60 m high cliff at 95 m/s. How far does it travel before hitting the enemy castle?
See Solution
Problem 56890
Exercice 0 : 1- Montrer que
(
G
=
R
∗
×
R
,
∗
)
(G=\mathbb{R}^{*} \times \mathbb{R}, *)
(
G
=
R
∗
×
R
,
∗
)
est un groupe non commutatif. 2- Montrer que
(
Z
2
,
⊕
,
⊙
)
(\mathbb{Z}^{2}, \oplus, \odot)
(
Z
2
,
⊕
,
⊙
)
est un anneau commutatif.
See Solution
Problem 56891
Evaluate the integral from 4 to 3 of
cos
(
arctan
(
5
t
)
)
1
+
(
5
t
)
2
d
t
\frac{\cos (\arctan (5 t))}{1+(5 t)^{2}} dt
1
+
(
5
t
)
2
c
o
s
(
a
r
c
t
a
n
(
5
t
))
d
t
.
See Solution
Problem 56892
Find
f
(
x
)
f(x)
f
(
x
)
given that
f
′
(
x
)
=
4
1
−
x
2
f'(x)=\frac{4}{\sqrt{1-x^{2}}}
f
′
(
x
)
=
1
−
x
2
4
and
f
(
1
2
)
=
8
f\left(\frac{1}{2}\right)=8
f
(
2
1
)
=
8
.
See Solution
Problem 56893
A cannon is fired horizontally from a height of
5.0
m
5.0 \mathrm{~m}
5.0
m
. How long until it hits the ground?
See Solution
Problem 56894
Find the slope-intercept form of the line through
(
9
,
−
2
)
(9,-2)
(
9
,
−
2
)
with slope
−
4
3
-\frac{4}{3}
−
3
4
.
See Solution
Problem 56895
Find the slope-intercept form equation of a line through
(
2
,
5
)
(2,5)
(
2
,
5
)
with a slope of 3.
See Solution
Problem 56896
Evaluate the integral for
x
>
0
x>0
x
>
0
:
∫
1
x
64
x
2
−
1
d
x
=
\int \frac{1}{x \sqrt{64 x^{2}-1}} d x=
∫
x
64
x
2
−
1
1
d
x
=
See Solution
Problem 56897
Ashley has a \$90,500 mortgage at 3.45\% for 40 years. Find her monthly payment, total repayment, and total interest.
See Solution
Problem 56898
Evaluate the integral for
x
>
0
x>0
x
>
0
:
∫
1
x
64
x
2
−
1
d
x
=
C
\int \frac{1}{x \sqrt{64 x^{2}-1}} d x = C
∫
x
64
x
2
−
1
1
d
x
=
C
.
See Solution
Problem 56899
Find the formula for the bottom half of the parabola defined by
x
+
(
y
−
9
)
2
=
0
x + (y - 9)^{2} = 0
x
+
(
y
−
9
)
2
=
0
. What is
y
=
y=
y
=
?
See Solution
Problem 56900
Find the exact values of these expressions in radians (or UNDEFINED if not defined): (a)
sin
−
1
(
−
1
)
\sin^{-1}(-1)
sin
−
1
(
−
1
)
, (b)
cos
−
1
(
0
)
\cos^{-1}(0)
cos
−
1
(
0
)
, (c)
tan
−
1
(
3
3
)
\tan^{-1}\left(\frac{\sqrt{3}}{3}\right)
tan
−
1
(
3
3
)
.
See Solution
<
1
...
566
567
568
569
570
571
572
...
662
>
Start learning now
Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.
Download on the
App Store
Get it on
Google Play
Parents
Influencer program
Contact
Policy
Terms