Math

Problem 66101

Simplify: a. 5x23x5x - 2 - 3x; b. 5x(23x)5x - (2 - 3x). What are the simplified forms?

See Solution

Problem 66102

Simplify the expression: -5(2 x-4) + 11 x - 10 = ?

See Solution

Problem 66103

Find the equations of the line perpendicular and parallel to y=98x+1y=-\frac{9}{8} x+1 through the point (8,3)(8,-3).

See Solution

Problem 66104

Determine if the lines 8x+6y=88 x+6 y=8, 4y=3x+54 y=-3 x+5, and y=34x+7y=-\frac{3}{4} x+7 are parallel, perpendicular, or neither.

See Solution

Problem 66105

The integral that represents the area of the region enclosed by f(x)=x3xf(x)=x^{3}-x and the xx-axis is 01(x3x)dx\int_{0}^{1}\left(x^{3}-x\right) d x 11(xx3)dx\int_{-1}^{1}\left(x-x^{3}\right) d x 11(x3x)dx\int_{-1}^{1}\left(x^{3}-x\right) d x 201(xx3)dx2 \int_{0}^{1}\left(x-x^{3}\right) d x

See Solution

Problem 66106

3. Multiply: (a) 3.2×63.2 \times 6 (b) 2.85×82.85 \times 8 (c) 7.49×237.49 \times 23 (e) 0.426×230.426 \times 23 (e) 5.82×2.55.82 \times 2.5 (g) 1.026×10001.026 \times 1000 (4) 0.008×10000.008 \times 1000 (1) 1.832×17.351.832 \times 17.35 (k) 0.057×0.060.057 \times 0.06 (h) 16.92×105.416.92 \times 105.4 (a) If a bag of paddy weighs 75.25 kg , what is the weight of 150 bags? (b) 1.25 m of cloth is required to make 1 shirt. What is the length of cloth requir make 8 shirts?

See Solution

Problem 66107

9. 7{ }^{7} (a) If the two angles of a triangle are 5050^{\circ} and 7575^{\circ}, find the third ang. b) If 2x,4x2 x^{\circ}, 4 x^{\circ} and 6x6 x^{\circ} are the three angles of a triangle, find the valuer is find the angles. (c) If the three angles of a triangle are x,(x+20)x^{\circ},(x+20)^{\circ} and (x50)(x-50)^{\circ}, find x . Also, find the angles. (d) If the two opposite interior angles of a triangle are 3030^{\circ} and 5555^{\circ} exterior angle of a triangle.
10. त(3) In a right angled triangle, one acute angle is 4040^{\circ}. Find the other atexes that triangle. (b) In an equilateral triangle, one angle is 6060^{\circ}. Find the remaining anglo (c) In an isosceles triangle, one base angle is 4545^{\circ}. Find the another bases

स'(d) If one angle of an isosceles triangle is equal to the sum of remaining angles, find the size of each angle.
11. (a) In a ABC,A=B=65\triangle A B C, \angle A=\angle B=65^{\circ}, find C\angle C.

See Solution

Problem 66108

Attempt All Questions
1. Dichromate ion (Cr2O72)\left(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right) in acidic solution is a good oxidizing agent. Which of the following oxidations can be accomplished with dichromate ion in acidic solution? Explain a. Sn2+(aq)\mathrm{Sn}^{2+}(\mathrm{aq}) to Sn4+(aq)\mathrm{Sn}^{4+}(\mathrm{aq}) b. Ag(s)\mathrm{Ag}(\mathrm{s}) to Ag+(aq)\mathrm{Ag}^{+}(\mathrm{aq})
2. For each of the following cell diagrams a. Pt(s)Fe2+(aq),Fe3+(aq)Ag+(aq)Ag(s)\operatorname{Pt}(\mathrm{s})\left|\mathrm{Fe}^{2+}(\mathrm{aq}), \mathrm{Fe}^{3+}(\mathrm{aq}) \|\left|\mathrm{Ag}^{+}(\mathrm{aq})\right| \mathrm{Ag}(\mathrm{s})\right. b. Pt(s)Mn2+(aq),MnO4(aq)Cu2+(aq)Cu(s)\mathrm{Pt}(\mathrm{s})\left|\mathrm{Mn}^{2+}(\mathrm{aq}), \mathrm{MnO}_{4}^{-}(\mathrm{aq})\right|\left|\mathrm{Cu}^{2+}(\mathrm{aq})\right| \mathrm{Cu}(\mathrm{s}) i. calculate the Ecell oE_{\text {cell }}^{o} ii. what is the change in Gibbs free energy? iii. is the cell reaction spontaneous or nonspontaneous? Explain.
3. Will the following reaction Cr2O72(aq)+14H++6Ag( s)2Cr3+(aq)+6Ag+(aq)+7H2O(l)Ecell =0.023 V\mathrm{Cr}_{2} \mathrm{O}_{7}^{2 \cdot}(\mathrm{aq})+14 \mathrm{H}^{+}+6 \mathrm{Ag}(\mathrm{~s}) \longrightarrow 2 \mathrm{Cr}^{3+}(\mathrm{aq})+6 \mathrm{Ag}^{+}(\mathrm{aq})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) E_{\text {cell }}=-0.023 \mathrm{~V} be spontaneous if [Cr2O72]=[Ag+]=0.675M,[Cr3+]=0.6M\left[\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}\right]=[\mathrm{Ag}+]=0.675 \mathrm{M},\left[\mathrm{Cr}^{3+}\right]=0.6 \mathrm{M} and pH=2\mathrm{pH}=2 ? Explain.
4. Define the following terms a) Oxidation b) Oxidizing agent c) Salt bridge d) Liquid junction e) Standard electrode potential

See Solution

Problem 66109

1. What is hydrodynamic voltammetry? State two (2) applications of voltammetry.
2. What is the potential of a cell consisting of a silver electrode dipped in silver nitrate solution with [Ag+]=0.01M[\mathrm{Ag}+]=0.01 \mathrm{M} and a standard calomel reference electrode (Eref=+0.242\left(\mathrm{E}_{\mathrm{ref}}=+0.242\right. V). Neglect liquid-junction potential.
3. Briefly describe a simple electrochemical cell used in potentiometric analysis. Write a cell diagram for this cell.
4. Calculate the ionic strengths of the following solutions A) 0.20 M NaCl and 0.30MNa2SO40.30 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4} B) 0.1MK2Cr2O70.1 \mathrm{M} \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}

See Solution

Problem 66110

5. Calculate the activity coefficients of sodium and chloride ions for a 0.04 M NaCl solution
6. What is an electrode of the first kind? Write a general Nernst equation for this indicator electrode.
7. A solution of 0.25MCr2O720.25 \mathrm{M} \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} and 0.35MCr3+0.35 \mathrm{M} \mathrm{Cr}^{3+} has a pH of 2.0 . What is the Ecell \mathrm{E}_{\text {cell }} of this half-cell?
8. In an acidic solution, O2( g)\mathrm{O}_{2}(\mathrm{~g}) oxidizes Cr2+(aq)\mathrm{Cr}^{2+}(\mathrm{aq}) to Cr3+(aq)\mathrm{Cr}^{3+}(\mathrm{aq}). The O2( g)\mathrm{O}_{2}(\mathrm{~g}) is reduced to H2O(l)\mathrm{H}_{2} \mathrm{O}(\mathrm{l}). Ecell oE_{\text {cell }}^{o} for this reaction is +1.653 V . What is the electrode potential for the Cr3+/Cr2+\mathrm{Cr}^{3+} / \mathrm{Cr}^{2+} half-cell?

See Solution

Problem 66111

5. Calculate the activity coefficients of sodium and chloride ions for a 0.04 M NaCl solution
6. What is an electrode of the first kind? Write a general Nernst equation for this indicator electrode.
7. A solution of 0.25MCr2O720.25 \mathrm{M} \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} and 0.35MCr3+0.35 \mathrm{M} \mathrm{Cr}^{3+} has a pH of 2.0 . What is the Ecell \mathrm{E}_{\text {cell }} of this half-cell?

See Solution

Problem 66112

6. What is an electrode of the first kind? Write a general Nernst equation for this indicator electrode.
7. A solution of 0.25MCr2O720.25 \mathrm{M} \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} and 0.35MCr3+0.35 \mathrm{M} \mathrm{Cr}^{3+} has a pH of 2.0 . What is the Ecell \mathrm{E}_{\text {cell }} of this halfcell?

See Solution

Problem 66113

y=x2+4x+4y=x^{2}+4 x+4

See Solution

Problem 66114

 : (2) (2) xlnx>0\begin{array}{l} \text { : (2) (2) } \\ x-\ln x>0 \end{array} lnln(gc):f(x)=lnxxlnx:x>0 3-3h11 f(0)=1\begin{array}{l} \ln \ln \left(g_{c}\right): f(x)=\frac{\ln x}{x-\ln x}: x>0 \\ \text { 3-3h11 } f(0)=-1 \end{array} limx+f(x) با. \begin{array}{l} \lim _{x \rightarrow+\infty} f(x) \text { با. } \end{array} f(x)=1lnx(xlnx)2\begin{array}{l} f^{\prime}(x)=\frac{1-\ln x}{(x-\ln x)^{2}} \end{array}  المحدادل \begin{array}{l} \text { المحدادل } \end{array}

See Solution

Problem 66115

Fill in the information about the parabolas below. (a) For each parabola, choose whether it opens upward or downward. y=x2: (Choose one) vy=13x2: (Choose one) vy=12x2: (Choose one) v (Choose one) vy=-x^{2}: \text { (Choose one) } v y=-\frac{1}{3} x^{2}: \text { (Choose one) } v \quad y=\frac{1}{2} x^{2}: \text { (Choose one) } v \text { (Choose one) } v (b) Choose the parabola with the narrowest graph. y=x2y=-x^{2} y=13x2y=-\frac{1}{3} x^{2} y=12x2y=\frac{1}{2} x^{2} y=3x2y=-3 x^{2} (c) Choose the parabola with the widest graph. y=x2y=-x^{2} y=13x2y=-\frac{1}{3} x^{2} y=12x2y=\frac{1}{2} x^{2} y=3x2y=-3 x^{2}

See Solution

Problem 66116

How many proportional relationships are shown in the coordinate plane below?
Choose 1 answer:
A 0 (B) 1 (C) 2 (D) 3

See Solution

Problem 66117

Whante D2dA\int_{D} 2 d A, where D={(x,y):0x1,xy1+x)D=\{(x, y): 0 \leq x \leq 1, x \leq y \leq 1+x). A.0A .0 B. 3 0.4
3. Folluate D10dA\iint_{D} 10 d A, where D={(x,y):0y2,0xy}D=\{(x, y): 0 \leq y \leq 2,0 \leq x \leq y\}. A. 1 B. 5 C. 10 D. 20
14. If f(x,y)=4f(x, y)=4, evaluate Rf(x,y)dA\iint_{R} f(x, y) d A, where R={(r,θ):1r2,0θπ}R=\{(r, \theta): 1 \leq r \leq 2,0 \leq \theta \leq \pi\}. A. π\pi B. 3π3 \pi C. 6π6 \pi D. 10π10 \pi
15. Express aa0a2x2(x2+y2)3/2dydx\int_{-a}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}}\left(x^{2}+y^{2}\right)^{3 / 2} d y d x in polar coordinates. A. 0π/20ar5drdθ\int_{0}^{\pi / 2} \int_{0}^{a} r^{5} d r d \theta B. 0π0ar4drdθ\int_{0}^{\pi} \int_{0}^{a} r^{4} d r d \theta C. 0π0ar3drdθ\int_{0}^{\pi} \int_{0}^{a} r^{3} d r d \theta D. 0π02cosθr2drdθ\int_{0}^{\pi} \int_{0}^{2 \cos \theta} r^{2} d r d \theta
16. Express Exz3dV\iiint_{E} x z^{3} d V, where E={(x,y,z):0x1,0yx,0zx2y2}E=\left\{(x, y, z): 0 \leq x \leq 1,0 \leq y \leq x, 0 \leq z \leq x^{2} y^{2}\right\} in a form that can be evaluated. A. 0x2y20x01xz3dxdydz\int_{0}^{x^{2} y^{2}} \int_{0}^{x} \int_{0}^{1} x z^{3} d x d y d z B. 0x010x2y2xz2dzdxdy\int_{0}^{x} \int_{0}^{1} \int_{0}^{x^{2} y^{2}} x z^{2} d z d x d y C. 010x2y20xxz2dydzdx\int_{0}^{1} \int_{0}^{x^{2} y^{2}} \int_{0}^{x} x z^{2} d y d z d x D). 010x0x2y2xz2dzdydx\int_{0}^{1} \int_{0}^{x} \int_{0}^{x^{2} y^{2}} x z^{2} d z d y d x
17. | et E={(r,0,z):00π,0r2,1zr2}E=\left\{(r, 0, z): 0 \leq 0 \leq \pi, 0 \leq r \leq 2,1 \leq z \leq r^{2}\right\} and f(x,y,z)=2f(x, y, z)=2. lixpress Ef(x,y,z)dV\iiint_{E} f(x, y, z) d V in cylindrical condinates. ค. 0π021r2zrd%drd0\int_{0}^{\pi} \int_{0}^{2} \int_{1}^{r^{2}} z r d \% d r d 0
13. 011021r2%d%drd()\int_{0}^{11} \int_{0}^{2} \int_{1}^{r^{2}} \% d \% d r d() (i. 03x021r2zr2dzdrd0\int_{0}^{3 x} \int_{0}^{2} \int_{1}^{r^{2}} z r^{2} d z d r d 0 1) 1111121r2zrd%d0dr\int_{1}^{11} \int_{11}^{2} \int_{1}^{r^{2}} z r d \% d 0 d r

Pape 3 ald

See Solution

Problem 66118

16. Express Exz3dV\iiint_{E} x z^{3} d V, where E={(x,y,z):0x1,0yx,0zx2y2}E=\left\{(x, y, z): 0 \leq x \leq 1,0 \leq y \leq x, 0 \leq z \leq x^{2} y^{2}\right\} in a form that can be evaluated. A. 0x2y20x01xz3dxdydz\int_{0}^{x^{2} y^{2}} \int_{0}^{x} \int_{0}^{1} x z^{3} d x d y d z B. 0x010x2y2xz2dzdxdy\int_{0}^{x} \int_{0}^{1} \int_{0}^{x^{2} y^{2}} x z^{2} d z d x d y C. 010x2y20xxz2dydzdx\int_{0}^{1} \int_{0}^{x^{2} y^{2}} \int_{0}^{x} x z^{2} d y d z d x D. 010x0x2y2xz2dzdydx\int_{0}^{1} \int_{0}^{x} \int_{0}^{x^{2} y^{2}} x z^{2} d z d y d x

See Solution

Problem 66119

183{ }_{1}^{8} 3

See Solution

Problem 66120

ate D2dA\iint_{D} 2 d A, where D=((x,y):0x1,xy1+x)D=((x, y): 0 \leq x \leq 1, x \leq y \leq 1+x).

See Solution

Problem 66121

Here is a regular hexagon and a regular pentagon.
Work out the size of the angle marked xx. You must show all your working.

See Solution

Problem 66122

The table shows some information about the profit made each day at a cricket club on 100 days. (a) Complete the cumulative frequency table. \begin{tabular}{|c|c|} \hline Pront (£x) & \begin{tabular}{c} Crmulative \\ frequency \end{tabular} \\ \hline 0x<500 \leq x<50 & \\ \hline 0x<1000 \leq x<100 & \\ \hline 0x<1500 \leq x<150 & \\ \hline 0x<2000 \leq x<200 & \\ \hline 0x<2500 \leq x<250 & \\ \hline 0x<3000 \leq x<300 & \\ \hline \end{tabular} (b) On the grid, draw a cumulative frequency graph for this information. \begin{tabular}{|c|c|} \hline Proft ( £x)£ x) & Frequency \\ \hline 0x<500 \leq x<50 & 10 \\ \hline 50x<10050 \leq x<100 & 15 \\ \hline 100x<150100 \leq x<150 & 25 \\ \hline 150x<200150 \leq x<200 & 30 \\ \hline 200x<250200 \leq x<250 & 5 \\ \hline 250x<300250 \leq x<300 & 15 \\ \hline \end{tabular} (1) (2) (c) Use your graph to find an estimate for the number of days on which the profit was less than £125£ 125 days \qquad (d) Use your graph to find an estimate for the interquartile range.

See Solution

Problem 66123

f(x)=3x2+2x+3f(x)=-3 x^{2}+2 x+3
Round to the nearest hundredth if necessary. If there is more than one xx-intercept, separate them If applicable, click on "None". \begin{tabular}{|ll|} \hline vertex: & (II, \square \\ xx-intercept(s): & \square \\ \hline \end{tabular}

See Solution

Problem 66124

Evaluate 3x2+2xyy33 x^{2}+2 x y-y^{3} for x=2x=2 and y=1y=-1. What is the result?

See Solution

Problem 66125

Evaluate 2x31y5\frac{2 x-31}{y-5} for x=7x=-7 and y=4y=-4. Is it a number or undefined?

See Solution

Problem 66126

Find where the function f(x)=6xf(x)=|6-x| is not differentiable and explain the reason.

See Solution

Problem 66127

Determine the relationship (parallel, perpendicular, or neither) for the lines: y=4x+5y=4x+5, 4x16y=324x-16y=32, y=14x2y=-\frac{1}{4}x-2.

See Solution

Problem 66128

Fill in the table for xx and 2x+72x + 7 with x=0,1,1x = 0, 1, -1. Simplify your answers.

See Solution

Problem 66129

A plane flew 180 miles against a 30mph30-\mathrm{mph} wind and returned with a 15mph15-\mathrm{mph} tailwind. Total time was 180 min. Find the plane's speed in still air.

See Solution

Problem 66130

Evaluate x2+y3y\frac{x^{2}+y}{3 y} for x=3x=-3 and y=2y=-2. Choose A or B: A. x2+y3y=\frac{x^{2}+y}{3 y}=\square or B. Undefined.

See Solution

Problem 66131

A tank fills in 9h, 12h with pipes and drains in 15h. How long to fill it with all pipes working? Give answer in h and min.

See Solution

Problem 66132

Determine if the lines y=43x5y=\frac{4}{3} x-5, 8x6y=68 x-6 y=6, and 3y=4x+73 y=4 x+7 are parallel, perpendicular, or neither.

See Solution

Problem 66133

1. Find the derivative dydt\frac{d y}{d t} for y=5t3+t2+4t1y=5 t^{3}+t^{2}+4 t-1.
2. Find the second derivative d2ydu2\frac{d^{2} y}{d u^{2}} for y=2u4+4u3+4y=2 u^{4}+4 u^{3}+4.
3. Find the fifth derivative d5ydθ5\frac{d^{5} y}{d \theta^{5}} for y=2sin(θ)+5cos(θ)y=2 \sin (\theta)+5 \cos (\theta).

See Solution

Problem 66134

Find f(64)f(64) for the function f(x)=x+x+4f(x)=x+\sqrt{x}+4.

See Solution

Problem 66135

Find δ\delta for ε=0.01\varepsilon=0.01 in the limit limx48x=32\lim _{x \rightarrow 4} 8 x=32.

See Solution

Problem 66136

Solve 612x4<166 \leq 12x - 4 < 16 and find time to fill a tank with pipes filling in 9h, 12h, and draining in 15h.

See Solution

Problem 66137

Fill in the table for xx and 15x-\frac{1}{5} x at x=0,5,5x = 0, 5, -5. Simplify your answers.

See Solution

Problem 66138

Determine if the following lines are parallel, perpendicular, or neither: Line 1: 4x10y=84x - 10y = 8 Line 2: y=52x4y = -\frac{5}{2}x - 4 Line 3: 2y=5x+32y = -5x + 3

See Solution

Problem 66139

Find δ\delta so that if x2<δ|x-2|<\delta, then 4x8<0.9|4x-8|<0.9.

See Solution

Problem 66140

Simplify these expressions using positive exponents: a. 29262^{-9} \cdot 2^{-6}, b. 29262^{9} \cdot 2^{6}, c. 515÷535^{15} \div 5^{3}, d. 515÷535^{15} \div 5^{-3}, e. (3)2(-3)^{-2}, f. b2b3\frac{b^{2}}{b^{-3}}.

See Solution

Problem 66141

Find the fixed cost FF and variable cost VV from the cost function C(x)C(x) using points (0, 660), (31, 1343), (95, 2750).
F=V= \begin{array}{l} F= \\ V= \end{array}

See Solution

Problem 66142

SDJ, Inc. has net working capital \$2,630, current liabilities \$5,970, and inventory \$3,860. Find the current and quick ratios.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord