Math Statement

Problem 26301

Find the decimal approximation of cot(26023)\cot \left(-260^{\circ} 23^{\prime}\right) rounded to seven decimal places.

See Solution

Problem 26302

Find θ\theta in [0,90][0^{\circ}, 90^{\circ}] such that sinθ=0.65303571\sin \theta = 0.65303571. What is θ\theta \approx? Round to six decimal places.

See Solution

Problem 26303

Simplify the expression: 3x3y3y3x\frac{3 x-3 y}{3 y-3 x}. Choose A. 1, B. -3, C. 3, or D. -1.

See Solution

Problem 26304

Simplify the product: x2+x28x+1\frac{x^{2}+x}{2} \cdot \frac{8}{x+1}. Select the correct answer.

See Solution

Problem 26305

Find the product and simplify: z340z52z2\frac{z^{3}}{40 z} \cdot \frac{5}{2 z^{2}}. Options: A. 116z\frac{1}{16 z} B. z16\frac{z}{16} C. 116\frac{1}{16} D. z316z2\frac{z^{3}}{16 z^{2}}

See Solution

Problem 26306

Find the slope of the line given by the equation 12x3y=2112 x - 3 y = -21.

See Solution

Problem 26307

Find the xx-intercept and yy-intercept of the line x+2y=2-x + 2y = 2. xx-intercept: 2, yy-intercept: ?

See Solution

Problem 26308

Find the slope-intercept form of a line with xx-intercept =7=7 and yy-intercept =2=2.

See Solution

Problem 26309

Solve the system using Gaussian elimination and backward substitution. Find the ordered triple for xx, yy, zz:
x+2y+4z=14x+3y+4z=8x+y5z=20 \begin{array}{rr} x+2y+4z= & 14 \\ -x+3y+4z= & 8 \\ x+y-5z= & -20 \end{array}
Choose A, B, or C based on the solution type.

See Solution

Problem 26310

Find the quotient and simplify: (y4)2/5÷(5y20)/25(y-4)^{2}/5 \div (5y-20)/25. Select one: A, B, C, or D.

See Solution

Problem 26311

To eliminate xx in the system below, if you multiply the first equation by 8, what should you multiply the second by?
6x+8y=58x13y=0 \begin{array}{l} -6 x+8 y=-5 \\ -8 x-13 y=0 \end{array}

See Solution

Problem 26312

Find the yy-intercept and xx-intercept of the line: 5x6y=305x - 6y = 30. What are the intercepts?

See Solution

Problem 26313

Find the solutions for x2=81x^{2}=81 using factoring methods.

See Solution

Problem 26314

Convierte el número decimal periódico 33,3%33, \overline{3} \% a fracción.

See Solution

Problem 26315

Solve the compound inequality: 3(z1)33(z-1) \geq -3 or 7z97-z \leq 9. Provide the solution set in interval notation.

See Solution

Problem 26316

Add and simplify: 211+x+x+611+x\frac{2}{11+x}+\frac{x+6}{11+x}. Choose the correct answer from the options given.

See Solution

Problem 26317

Let y=f(x)y=f(x) be a twice-differentiable function such that f(1)=3f(1)=3 and dydx=4y2+7x2\frac{d y}{d x}=4 \sqrt{y^{2}+7 x^{2}}. What is the value of d2ydx2\frac{d^{2} y}{d x^{2}} at x=1x=1 ? (A) 10 (B) 23 (C) 55 (D) 160

See Solution

Problem 26318

Step 1: \quad Subtract the exponents of powers with like bases. (x6y2)2\left(\frac{x^{6} y}{2}\right)^{-2}
Step 2: Apply the power of a product rule. x12y222\frac{x^{-12} y^{-2}}{2^{-2}}
Step 3: Write negative exponents as reciprocals using positive exponents. 122x12y2\frac{1}{2^{2} x^{12} y^{2}}
Step 4: Evaluate the power with the integer base. 14x12y2\frac{1}{4 x^{12} y^{2}}
In which step did Loi make the first error?

See Solution

Problem 26319

Which xx-value is a solution to 6x+8<16?-6 x+8<-16 ?

See Solution

Problem 26320

Order of Operations: Exercise 2 Grace
Date: \qquad Girace Answer these questions in your notebook. Set up each question properly and show all work clearly.
1. 8233+4×7(6(2)×(4)÷8×311)÷830÷(6))25\left.8^{2}-3^{3}+4 \times 7-(6-(-2) \times(-4) \div 8 \times 31-1) \div 8-30 \div(-6)\right)-2^{5}
2. (1)84÷5×5+694÷(716÷2)694+(3×(8)24)×13÷89+619(-1)^{84} \div 5 \times 5+694 \div(7-16 \div 2)^{694}+(-3 \times(-8)-24) \times 13 \div 89+6-19
3. 77×8÷77×[16+(7×2÷7×2)16+4]77 \times 8 \div 77 \times[16+(7 \times 2 \div 7 \times 2)-16+4]
4. 98(77)÷(7)+8(63×4)+(6+(2)(5)+32)(8(6)×3)98-(-77) \div(-7)+8-(6-3 \times 4)+(6+(-2)-(-5)+3-2)(8-(-6) \times 3)
5. (59+3)(15÷8×2÷3×4+4)(1÷8×(8))(6×55)(3÷9×9(2))(4)(5-9+3)(-15 \div 8 \times 2 \div 3 \times 4+4)(1 \div 8 \times(-8))(6 \times 5-5)(3 \div 9 \times 9-(-2))(-4)
6. 2369×125÷23×(4)÷(1)×2(25×91×(4)÷(7)×(3)+(12))2369 \times 125 \div 23 \times(-4) \div(-1) \times 2-(25 \times 91 \times(-4) \div(-7) \times(-3)+(-12))
7. 1÷22÷11×121×(6)2(36÷(33)×(11)÷4)÷(7(2)(5))(7)51 \div 22 \div 11 \times 121 \times(-6)-2(36 \div(-33) \times(-11) \div 4) \div(7-(-2)(-5))-(-7)-5
8. 60×85÷3÷(85)×1443÷481×(254×4)(16)+57-60 \times 85 \div 3 \div(-85) \times 1443 \div 481 \times\left(2^{5}-4 \times 4\right)-(1-6)+5-7
9. 5×4×3×2×10÷16×27+(173÷12×(2)÷(1)×(2)+5)×(7(5))5 \times 4 \times 3 \times 2 \times 1-0 \div 16 \times 27+(-17-3 \div 12 \times(-2) \div(-1) \times(-2)+5) \times(-7-(-5)) 3(819+2)(21)-3(8-19+2)-(-2-1)
10. 3(9+69+6)(8)÷(5)×(7×(6)(6)×(4)+7)(1136)11393(9+6-9+6)-(-8) \div(-5) \times(-7 \times(-6)-(-6) \times(-4)+7)-(-1136)-1139
11. 9(1216)×42÷(8)÷(7)(810)(3+3)÷97×563(13)+2×4-9-(-12-16) \times 42 \div(-8) \div(-7)-(8-10)(-3+3) \div 97 \times 563-(-13)+2 \times 4
12. 1÷(5)×3×104(12(6)×(2))÷7×(3)+3÷9×(93×2)1 \div(-5) \times 3 \times 10-4(12-(-6) \times(-2)) \div 7 \times(-3)+3 \div 9 \times(9-3 \times 2)
13. 8×37×(5)×255×17×(5)×4×3×5×(2)(12)÷3(1)-8 \times 37 \times(-5) \times 25-5 \times 17 \times(-5) \times 4 \times 3 \times 5 \times(-2)-(-12) \div 3-(-1)
14. (27×5)(53×2)+(5+3×(2))×(16)÷(2)+(27)(6+(5)÷(5))(-2-7 \times 5)(5-3 \times 2)+(-5+3 \times(-2)) \times(-16) \div(-2)+(2-7)(-6+(-5) \div(-5)) +(3×(5)2×2)(24÷28×(14)÷6)(3)×(2)+(3 \times(-5)-2 \times 2)(-24 \div 28 \times(-14) \div 6)-(-3) \times(-2)
15. (3)3(2)2÷7×(3)×14÷(2)(3)×(232×(2)6)76×(1)181×(2)3(-3)^{3}-(-2)^{2} \div 7 \times(-3) \times 14 \div(-2)-(-3) \times\left(-2-3^{2} \times(-2)-6\right)^{76} \times(-1)^{181} \times(-2)^{3}

See Solution

Problem 26321

y=5x5D:xR:y\begin{aligned} y & = 5 - \frac{x}{5} \\ D: & \leq x \leq \\ R: & \leq y \leq \end{aligned}

See Solution

Problem 26322

Find the vertex, axis of symmetry (AOS), domain, range, and transformations of the function f(x)=3x2 f(x) = 3|x-2| .

See Solution

Problem 26323

3x3x22xx2/33x2\frac{\sqrt{3 x} \cdot 3 x}{2}-\frac{2 x \cdot x^{2 / 3 \sqrt{3} x}}{2}

See Solution

Problem 26324

7. (3 marks) Suppose that h(x)=f(xg(x)),g(2)=3h(x)=f(x g(x)), g(2)=-3, f(6)=4f^{\prime}(-6)=4, and g(2)=5g^{\prime}(2)=5. Find h(2)h^{\prime}(2).

See Solution

Problem 26325

Temukan nilai eigen dan vektor eigen dan matriks A -3 3 3-5 3 6-64

See Solution

Problem 26326

1. Temukan nilai eigen dan vektor eigen dari matriks A=[133353664]A=\left[\begin{array}{ccc}1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4\end{array}\right]

See Solution

Problem 26327

Copy and complete the statement.
10. 6gal/min=6 \mathrm{gal} / \mathrm{min}= \qquad qt/min\mathrm{qt} / \mathrm{min}
11. 5.3 km/h=5.3 \mathrm{~km} / \mathrm{h}= \qquad m/h\mathrm{m} / \mathrm{h} Copyright \odot Big Ideas Learning, LLC

See Solution

Problem 26328

45=30\frac{4}{5}=\frac{\square}{30} and 56=30\frac{5}{6}=\frac{\square}{30}, so 45\frac{4}{5} is \square than 56\frac{5}{6}

See Solution

Problem 26329

QUESTION 2 Multiply and simplify completely. (26)(4+6)(2-\sqrt{6})(4+\sqrt{6}) \square

See Solution

Problem 26330

Use the Quadratic Formula to solve the equation x28x+61=0x^{2}-8 x+61=0 x=x= \square (Separate answers by a comma. Write answers as integers or reduced fractions.)
If the answer is radical use sqrt(5) to denote 5\sqrt{5} (use the correct radicand in the problem!) If the answer is complex use ii to denote ii. Question Help: \square Message instructor Submit Question Jump to Answer

See Solution

Problem 26331

Simpliby mo expression x4y3x2y8x^{4} y^{3} \cdot x^{2} y^{8}

See Solution

Problem 26332

Radicals
Use the product rule to simplify the radical. 5454=\begin{array}{c} \sqrt{54} \\ \sqrt{54}=\square \end{array} \square (Simplify your answer. Type an exact answer, using radicals as needed.)

See Solution

Problem 26333

d) 210=40(1.5)x210=40(1.5)^{x}

See Solution

Problem 26334

LATIHAN
1. Temukan nilai eigen dan vektor eigen dari matriks A=[133353664]A=\left[\begin{array}{ccc}1 & -3 & 3 \\ 3 & -5 & 3 \\ 6 & -6 & 4\end{array}\right]
2. Temukan nilai eigen dan vektor eigen dari matriks A=[0123]A=\left[\begin{array}{cc}0 & 1 \\ -2 & -3\end{array}\right]

See Solution

Problem 26335

18. Solve the following inequality algebraically 2x6<7|2 x-6|<7

See Solution

Problem 26336

3(x+2)=213(x+2)=21

See Solution

Problem 26337

The movement of the progress bar may be uneven because questions can be worth more or less (including zero) depending on your onswer. How could you correctly rewrite the equation 4(5+3)=2(226)4(5+3)=2(22-6) using the distributive property? 20+12=441220+12=44-12

See Solution

Problem 26338

Solve for aa. Express your answer in simplest radical form if necessary. a3=78a^{3}=78
Answer Attempt 1 out of 2

See Solution

Problem 26339

(4) What is xx ?
x2=169x^{2}=169 \square x=84.5x=16\begin{array}{l} x=-84.5 \\ x=-16 \end{array} \qquad x^=16x=13\begin{array}{l} \hat{x}=-16 \\ x=-13 \end{array} \square x=13x=13
x=16x=16 \qquad x=84.5x=84.5

See Solution

Problem 26340

78. If f(x)=ln(x)f(x)=\ln (x) and gg is a differentiable function with domain x>0x>0 such that limxg(x)=\lim _{x \rightarrow \infty} g(x)=\infty and gg^{\prime} has a horizontal asymptote at y=4y=4 then limxf(x)g(x)\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)} is A. 0 B. -4 C. 4 D. nonexistent

See Solution

Problem 26341

Find the horizontal asymptote, if any, of the graph of the rational function. h(x)=11x35x2+8h(x)=\frac{11 x^{3}}{5 x^{2}+8}
Select the correct choice below and, if necessary, fill in the answer box to complete your choi A. The horizontal asymptote is \square . (Type an equation.) B. There is no horizontal asymptote.

See Solution

Problem 26342

Find the horizontal asymptote, if any, of the graph of the rational function. f(x)=6x+75x+4f(x)=\frac{-6 x+7}{5 x+4}
Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The horizontal asymptote is \square . (Type an equation. Simplify your answer. Use integers or fractions for any numbers in the equation.) B. There is no horizontal asymptote.

See Solution

Problem 26343

6(w+1)3w=3(w+42(3a1)=4a+107b3(b+2)=4b115(c2)+3c=4(2c+1\begin{array}{l}6(w+1)-3 w=3(w+4 \\ 2(3 a-1)=4 a+10 \\ 7 b-3(b+2)=4 b-11 \\ 5(c-2)+3 c=4(2 c+1\end{array}

See Solution

Problem 26344

Given x>0x>0 and y>0y>0, select the expression that is equivalent to 256x16y64\sqrt[4]{256 x^{16} y^{6}}

See Solution

Problem 26345

Graph the function. f(x)=x7f(x)=\sqrt{x}-7

See Solution

Problem 26346

90. What is the absolute minimum value of y=43x38x2+15xy=\frac{4}{3} x^{3}-8 x^{2}+15 x on 1x31 \leq x \leq 3 ? A. 0 f(x)1=4x216x+15f(x)^{1}=4 x^{2}-16 x+15 B. 253\frac{25}{3} C. 9 f(1)=2534x210x6x+151(3)=92x(2x5)3(2x5)\begin{array}{ll} f(1)=\frac{25}{3} & 4 x^{2}-10 x-6 x+15 \\ 1(3)=9 & 2 x(2 x-5)-3(2 x-5) \end{array} D. 523\frac{52}{3} f(3)=92x(2x5)3(2x5f5)=253(2x3)(2x5)\begin{array}{ll} f(3)=9 & 2 x(2 x-5)-3(2 x-5 \\ f \mid 5)=\frac{25}{3} & (2 x-3)(2 x-5) \end{array}

See Solution

Problem 26347

Simplify each expression (9x+7)(5x4x3)(9 x+7)\left(-5 x^{4}-x^{3}\right)

See Solution

Problem 26348

6. a5(9a49a3+4a2)a^{5}\left(-9 a^{4}-9 a^{3}+4 a^{2}\right)

See Solution

Problem 26349

9. 6x+8=506 x+8=50

See Solution

Problem 26350

11. 13=4k+913=-4 k+9

See Solution

Problem 26351

Does the equation below represent a relation, a function, both a relation and a function, or neither a relation nor a function? y=9x29x+20y=9 x^{2}-9 x+20 A. both a relation and a function B. function only C. relation only D. neither a relation nor a function

See Solution

Problem 26352

4. x216=0x^{2}-16=0

See Solution

Problem 26353

Find the vector of stable probabilities for the Markov chain whose transition matrix is [0.10.80.1100100]W=\begin{array}{c} {\left[\begin{array}{ccc} 0.1 & 0.8 & 0.1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{array}\right]} \\ W= \end{array} \square \square

See Solution

Problem 26354

Find an equation for a sinusoidal function that has period 2π2 \pi, amplitude 2 , and contains the point ( 2π,02 \pi, 0 ).
Write your answer in the form f(x)=Asin(Bx+C)+D\mathrm{f}(\mathrm{x})=\mathrm{A} \sin (\mathrm{Bx}+\mathrm{C})+\mathrm{D}, where A,B,C\mathrm{A}, \mathrm{B}, \mathrm{C}, and D are real numbers. f(x)=f(x)= \square

See Solution

Problem 26355

Solve the Inequality. y+7<6y+7<-6
The inequality is \square

See Solution

Problem 26356

Find the derivative of the function f(x)=ex+19(x)ex1f(x)=\frac{e^{x}+1}{9(x) e^{x}-1}. Simplify your answer.

See Solution

Problem 26357

(152)12\left(\frac{1-\sqrt{5}}{2}\right)^{12}

See Solution

Problem 26358

Let ff be a twice-differentiable function such that f(1)=0f^{\prime}(1)=0. The second derivative of ff is given by f(x)=x2cos(x2+π)f^{\prime \prime}(x)=x^{2} \cos \left(x^{2}+\pi\right) for 1x3-1 \leq x \leq 3. (a) On what open intervals contained in 1<x<3-1<x<3 is the graph of ff concave up? Give a reason for your answer.
No response entered (b) Does ff have a relative minimum, a relative maximum, or neither at x=1x=1 ? Justify your answer.
No response entered (c) Use the Mean Value Theorem on the closed interval [1,1][-1,1] to show that f(1)f^{\prime}(-1) cannot equal 2.5.
No response entered (d) Does the graph of ff have a point of inflection at x=0x=0 ? Give a reason for your answer.

See Solution

Problem 26359

A particle moves along the xx-axis so that its position at time t>0t>0 is given by x(t)=t293t2+8x(t)=\frac{t^{2}-9}{3 t^{2}+8}. (a) Show that the velocity of the particle at time tt is given by v(t)=70t(3t2+8)2v(t)=\frac{70 t}{\left(3 t^{2}+8\right)^{2}}.
No response entered (b) Is the particle moving toward the origin or away from the origin at time t=2t=2 ? Give a reason for your answer.
No response entered (c) The acceleration of the particle is given by a(t)a(t). Write an expression for a(t)a(t), and find the value of a(2)a(2).
No response entered (d) What position does the particle approach as tt approaches infinity?

See Solution

Problem 26360

Consider the curve given by the equation (2y+1)324x=3(2 y+1)^{3}-24 x=-3. (a) Show that dydx=4(2y+1)2\frac{d y}{d x}=\frac{4}{(2 y+1)^{2}}.
No response entered (b) Write an equation for the line tangent to the curve at the point (1,2)(-1,-2).
No response entered (c) Evaluate d2ydx2\frac{d^{2} y}{d x^{2}} at the point (1,2)(-1,-2).
No response entered (d) The point (16,0)\left(\frac{1}{6}, 0\right) is on the curve. Find the value of (y1)(0)\left(y^{-1}\right)^{\prime}(0). (3) 55F55^{\circ} \mathrm{F}

See Solution

Problem 26361

(2g3+g2)(4g37g23g)\left(2 g^{3}+g^{2}\right)\left(4 g^{3}-7 g^{2}-3 g\right)

See Solution

Problem 26362

Use logarithmic differentiation to differentiate each function with respect to xx. You do not need to simplify or substitute for yy. y=(x2+4)3(2x41)5(4x9+5)6y=\frac{\left(x^{2}+4\right)^{3}}{\left(2 x^{4}-1\right)^{5} \cdot\left(4 x^{9}+5\right)^{6}} A) dydx=y(6xx2+4160x32x41864x84x9+5)\frac{d y}{d x}=y\left(\frac{6 x}{x^{2}+4}-\frac{160 x^{3}}{2 x^{4}-1}-\frac{864 x^{8}}{4 x^{9}+5}\right) B) dydx=y(18xx2+480x32x41+432x84x9+5)\frac{d y}{d x}=y\left(\frac{18 x}{x^{2}+4}-\frac{80 x^{3}}{2 x^{4}-1}+\frac{432 x^{8}}{4 x^{9}+5}\right) C) dydx=y(6xx2+440x32x41+864x84x9+5)\frac{d y}{d x}=y\left(\frac{6 x}{x^{2}+4}-\frac{40 x^{3}}{2 x^{4}-1}+\frac{864 x^{8}}{4 x^{9}+5}\right) D) dydx=y(6xx2+440x32x41216x84x9+5)\frac{d y}{d x}=y\left(\frac{6 x}{x^{2}+4}-\frac{40 x^{3}}{2 x^{4}-1}-\frac{216 x^{8}}{4 x^{9}+5}\right)

See Solution

Problem 26363

6. Найдите точки, в которых компоненты градиента функции z=x2+y2+5xy+x4y+1z=x^{2}+y^{2}+5 x y+x-4 y+1 равны нулю.

See Solution

Problem 26364

[4] If A1=[3211]A^{-1}=\left[\begin{array}{cc}3 & 2 \\ -1 & 1\end{array}\right] and B1=[1134]B^{-1}=\left[\begin{array}{cc}1 & -1 \\ -3 & 4\end{array}\right], and (AB)1=[xzyh](A B)^{-1}=\left[\begin{array}{ll}x & z \\ y & h\end{array}\right], then x+y+z+hx+y+z+h a) -10 b) 3 c) 8 d) 20 [5] If abcdefghijklmnop=3\left|\begin{array}{cccc}a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p\end{array}\right|=-3, then det(2[abcdefghijklmnop])=\operatorname{det}\left(2\left[\begin{array}{cccc}a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p\end{array}\right]\right)= a) -6 b) -48 c) -12 d) -32 [6] The linear system given by AX=BA X=B where AA is 2×22 \times 2 square matrix, Ax=[2161]A_{x}=\left[\begin{array}{cc}2 & -1 \\ 6 & 1\end{array}\right] and Ay=[3216]A_{y}=\left[\begin{array}{ll}3 & 2 \\ 1 & 6\end{array}\right], then X=X= a) [24]\left[\begin{array}{l}2 \\ 4\end{array}\right] b) [24]\left[\begin{array}{c}-2 \\ 4\end{array}\right] c) [42]\left[\begin{array}{l}4 \\ 2\end{array}\right] d) [42]\left[\begin{array}{l}-4 \\ -2\end{array}\right]
Q2: Write (T) for the correct statement and (F) for the false one [1] \qquad If A=A1|A|=\left|A^{-1}\right| then A|A| must equal to 1. [2] \qquad If A=[2]A=[-\sqrt{2}] then A1=[22]A^{-1}=\left[-\frac{\sqrt{2}}{2}\right] [3] \qquad 3ATA3 A^{\mathrm{T}} A is a symmetric matrix. [4] \qquad The matrix A=[1530020800100002]A=\left[\begin{array}{cccc}1 & 5 & -3 & 0 \\ 0 & -2 & 0 & 8 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 2\end{array}\right] is singular.

See Solution

Problem 26365

Let gg be the function defined by g(x)=(x2x+1)exg(x)=\left(x^{2}-x+1\right) e^{x}. What is the absolute maximum value of gg on the interval [4,1]?[-4,1] ? (A) 1 (B) ee (C) 3e\frac{3}{e} (D) 21e1\frac{21}{e^{1}} https://apclassroom.collegeboard.org/25/assessments/results/62905152/performance/591...

See Solution

Problem 26366

tentukan wt\frac{\partial w}{\partial t} dengan aturan rantai dan ungkapkan Jawaban akhir dalam bentuk ss dan tt.
12. w=exy+z;x=s+t,y=st,z=t2w=e^{x y+z} ; x=s+t, y=s-t, z=t^{2}.

See Solution

Problem 26367

Find the derivative. y=ln(6x+7)e6x+7y=\frac{\ln (6 x+7)}{e^{6 x+7}}
Select one: A. 16[ln(6x+7)]2ln[6x+7]e(6x+7)\frac{1-6[\ln (6 x+7)]^{2}}{\ln [6 x+7] e^{(6 x+7)}} B. 1(6x+7)e(6x+7)\frac{1}{(6 x+7) e^{(6 x+7)}} C. 6(36x+42)ln(6x+7)(6x+7)e(6x+7)\frac{6-(36 x+42) \ln (6 x+7)}{(6 x+7) e^{(6 x+7)}} D. 1(6x+7)ln(6x+7)(6x+7)e(6x+7)\frac{1-(6 x+7) \ln (6 x+7)}{(6 x+7) e^{(6 x+7)}}

See Solution

Problem 26368

23-28 True-False Determine whether tr - statement is true or false. Explain your answer.
23. If f(x)f(x) is continuous at x=cx=c, then so is f(x)|f(x)|.
24. If f(x)|f(x)| is continuous at x=cx=c, then so is f(x)f(x).
25. If ff and gg are discontinuous at x=cx=c, then so is f+gf+g.
26. If ff and gg are discontinuous at x=cx=c, then so is fgf g.

See Solution

Problem 26369

10) The improper integral 016tan1x1+x2dx\int_{0}^{\infty} \frac{16 \tan ^{-1} x}{1+x^{2}} d x A) diverges B) converges to 2π22 \pi^{2} C) converges to 12π2\frac{1}{2} \pi^{2} D) converges to 32π2\frac{3}{2} \pi^{2} E) NOTA

See Solution

Problem 26370

Condense each expression to a single logarithm. 19) log3xlog3y\log _{3} x-\log _{3} y 20) log8a+log8b\log _{8} a+\log _{8} b 21) log2u3\frac{\log _{2} u}{3} 22) 2log3122 \log _{3} 12 23) log58+log57\log _{5} 8+\log _{5} 7 24) log210log23\log _{2} 10-\log _{2} 3 25) 4logx4 \log x 26) log5x2\frac{\log _{5} x}{2}

See Solution

Problem 26371

Rational Functions, Equations, and Inequalities
NAME \qquad Williams 0.
DATE : 181 1212024 \qquad K 1/161 / 16 T 15 c 14 A 112 1) For each function, identify the location of the hole (if applicable), the equation(s) of the vertical asymptote(s) and the equation of the horizontal asymptote. (a) f(x)=x+1x2+xf(x)=\frac{x+1}{x^{2}+x} (b) g(x)=x2+4x+4x24g(x)=\frac{x^{2}+4 x+4}{x^{2}-4} [K-6]

See Solution

Problem 26372

Use the square root property to solve the Quadratic Equation. 2(x4)2=2002(x-4)^{2}=200

See Solution

Problem 26373

Use the Box Method to Simplify the following: (x+3)(x2)(x+3)(x-2)

See Solution

Problem 26374

2 correct factorization of x22x15zx^{2}-2 x-15 z a (x+5)(x3)(x+5)(x-3) b (x+5)(x+3)(x+5) \quad(x+3) c(x5)(x3)c(x-5)(x-3) d(x5)(x+3)d(x-5)(x+3)

See Solution

Problem 26375

35\sqrt{3} \cdot \sqrt{5}

See Solution

Problem 26376

5. y=2x+2y=7x+11\begin{aligned} y & =-2 x+2 \\ & y=7 x+11\end{aligned}

See Solution

Problem 26377

Exercice 4 Soit la suite (Un)\left(U_{n}\right) définiepar {U0=23Un+1=12Un+n22+12\left\{\begin{array}{c}U_{0}=\frac{2}{3} \\ U_{n+1}=\frac{1}{2} U_{n}+\frac{n}{2 \sqrt{2}}+\frac{1}{\sqrt{2}}\end{array}\right.
1. Calculer U1,U2U_{1}, U_{2} et U3U_{3}
2. On pose: n0Vn=Un2n\forall n \geq 0 \quad V_{n}=U_{n} \sqrt{2}-n. a. Calculer V0,V1V_{0}, V_{1} et V2V_{2} b. Montrer que (Vn)\left(V_{n}\right) est une suite géométrique c. Exprimer Vn\boldsymbol{V}_{\boldsymbol{n}} puis Un\boldsymbol{U}_{\boldsymbol{n}} en fonction de n\boldsymbol{n} d. Calculer en fonction de n:Sn=k=0k=nvkn: S_{n}=\sum_{k=0}^{k=n} v_{k}

See Solution

Problem 26378

A. B. C. x3x \leq-3 and x5x \geq 5 D. x<3x<-3 and x>5x>5 F. (,3][5,)(-\infty,-3] \cup[5, \infty) E. R\mathbb{R} G. (,3)(5,)(-\infty,-3) \cup(5, \infty) H. All real numbers I. No solutions
The questions in this level are taken directly from the Units 3 and 4 Review in "Activity: Review by Unit." Only proceed if you have completed that section of the activity.
Solve the compound inequality 4x+1114 x+1 \leq-11 and 3x+1<14-3 x+1<-14. Which of the options shown accurately represent(s) the solutions?

See Solution

Problem 26379

Unanswered
Question 11 Not yet graded / 1 pts
Evaluate the following improper integral if it is convergent. If it is not convergent, write divergent 0e2xdx\int_{0}^{\infty} e^{-2 x} d x
Your Answer:

See Solution

Problem 26380

15. [Maximum mark: 6] [without GDC]
The function ff is given by f(x)=x4+2x5+log(10x)f(x)=\sqrt{x-4}+\frac{2}{x-5}+\log (10-x). Find the largest possible domain of the function.

See Solution

Problem 26381

How many solutions does the equation have? y8=6|y|-8=6 no solution one solution two solutions Submit

See Solution

Problem 26382

Mrito vour answers without exponents. 823=8^{-\frac{2}{3}}=\square (4525)23=4(45-25)_{2}^{3}=4

See Solution

Problem 26383

3x2=54x3 x^{2}=5-4 x

See Solution

Problem 26384

ber line represents the solution to the absolute value inequality 2x+616|2 x|+6 \geq 16 ? 10987654321012345678910\begin{array}{lllll:llllllllllllllll} \\ -10 & -9 & -8 & -7 & -6 & -5 & -4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array} -10

See Solution

Problem 26385

Factor. 2y27y152 y^{2}-7 y-15

See Solution

Problem 26386

Derivatives of Inverse Trig Functions Score: 0/1 Penalty: none
Question Watch Video
If f(x)=sin1(x)f(x)=\sin ^{-1}(x), then what is the value of f(45)f^{\prime}\left(\frac{4}{5}\right) in simplest form?
Answer Attempt 1 out of 5 \square Submit Answer

See Solution

Problem 26387

Question 2x2+5x3=2 x^{2}+5 x-3= (2x3)(x+1)(2 x-3)(x+1) (2x+3)(x1)(2 x+3)(x-1) (2x1)(x+3)(2 x-1)(x+3) (2x+1)(x3)(2 x+1)(x-3) Type here to search

See Solution

Problem 26388

DPS Name: The solutions to the equation 3x24x+2=2x33 x^{2}-4 x+2=2 x-3 are 123±23i1 \frac{2}{3} \pm \frac{\sqrt{2}}{3} i 21±63i21 \pm \frac{\sqrt{6}}{3} i 31±12331 \pm \frac{\sqrt{12}}{3} 41±26i41 \pm 2 \sqrt{6} i
From the reference sheet: x=b±b24ac2ax=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}

See Solution

Problem 26389

10. Which function is an even function? y=2x4+3x2+4xy=4x+2\begin{array}{l} y=2 x^{4}+3 x^{2}+4 x \\ y=4 x+2 \end{array} 3) y=3x4+5x2+y=3 x^{4}+5 x^{2}+ 4) y=6x8+4xy=6 x^{8}+4 x

See Solution

Problem 26390

5. Which equation is linear?
4. xy=60x y=60 b. 3x2y=53 x-2 y=5 2yx23x+12 y-x^{2}-3 x+1
16. State whether each graph has line symmetry any lines of symmetry of points of symmetry. a. point symmetry; (0,0)(0,0) coint symmetry; (2(-2, b. (ine symertry; x=2x=-2 a. line symmetry; y=1y=1

See Solution

Problem 26391

y2dx+(2xyy2ey)dy=0y^{2} d x+\left(2 x y-y^{2} e^{y}\right) d y=0 exacl

See Solution

Problem 26392

Choose the correct answer : (5 points) 1) A particular solution for the differential equation y(4)+y(3)=2+4exy^{(4)}+y^{(3)}=2+4 e^{x} is (a) A+Bex\mathrm{A}+\mathrm{B} \mathrm{e}^{\mathrm{x}} (b) A+Bx+Cx2+Dex\mathrm{A}+\mathrm{Bx}+\mathrm{Cx}^{2}+\mathrm{D} \mathrm{e}^{\mathrm{x}} (c) Ax2+Bx2ex\mathrm{Ax}^{2}+\mathrm{Bx}^{2} \mathrm{e}^{\mathrm{x}} (d) Ax2+Bex\mathrm{Ax}^{2}+\mathrm{Be}^{\mathrm{x}} e)NOTA 2) The solution for the I.V.P sin(t)y+1t3y+ety=t3y(1)=0y(1)=1y(1)=1\sin (t) y^{\prime \prime \prime}+\frac{1}{t-3} y^{\prime \prime}+e^{t} y=t^{3} \quad y(1)=0 \quad y^{\prime}(1)=1 \quad y^{\prime \prime}(1)=-1 is guaranteed on a) (0,3)(0,3) b) (0,π)(0, \pi) c) (,3)(-\infty, 3) d) (,)(-\infty, \infty) 3) If a series solution is to be found for y4xy+4y=0,y(0)=2,y(0)=3y^{\prime \prime}-4 x y^{\prime}+4 y=0, y(0)=2, y^{\prime}(0)=3 then a2=\mathrm{a}_{2}= (a) -4 (b) 8 (c) -8 (d) 1 e)NOTA 4)Suppose the solution to the differential equation y+3y=0y^{\prime \prime}+3 y=0 is written as a power series y=n=0anxny=\sum_{n=0}^{\infty} a_{n} x^{n} What is the lower bound of the radius of convergence of this power series? a) 0 b)1 c)2 d) 3 e) \infty 5) The general solution for y+9y=0y^{\prime \prime \prime}+9 y^{\prime}=0 is : a) c1+c2cost+c3sintc_{1}+c_{2} \cos t+c_{3} \sin t b) c1+c2t+c3e9tc_{1}+c_{2} t+c_{3} e^{9 t} c) c1+c2e3t+c3e3tc_{1}+c_{2} e^{3 t}+c_{3} e^{-3 t} d) c1+c2e3t+c3te3tc_{1}+c_{2} e^{3 t}+c_{3} t e^{3 t} e)NOTA

See Solution

Problem 26393

false: (5 points) form of ypy_{p} for y3y+2y=xexy^{\prime \prime \prime}-3 y^{\prime}+2 y=x e^{x} is (Ax3+Bx2)ex\left(\mathrm{Ax}^{3}+B x^{2}\right) e^{x} the roots of the indicial equation are 0.3,1.7-0.3,1.7 then the D.E. has two nearly independent solutions W(f,g,h)=sintW(f, g, h)=\sin t then the functions f,g,hf, g, h are linearly dependent er bound for the radius of convergence for the series 1 of (1x3)y+4xy+y=0,x0=3\left(1-\mathrm{x}^{3}\right) y^{\prime \prime}+4 x y^{\prime}+y=0 \quad, \mathrm{x}_{0}=3 \quad is 2 =1=1 is a R.S.P for (x1)2y+3y+(x1)y=0(x-1)^{2} y^{\prime \prime}+3 y^{\prime}+(x-1) y=0

See Solution

Problem 26394

ue or false: (5 points) - The form of ypy_{p} for y3y+2y=xexy^{\prime \prime \prime}-3 y^{\prime}+2 y=x e^{x} is (Ax3+Bx2)ex\left(\mathrm{Ax}^{3}+B x^{2}\right) e^{x} - If the roots of the indicial equation are 0.3,1.7-0.3,1.7 then the D.E. has two linearly independent solutions - If W(f,g,h)=sintW(f, g, h)=\sin t then the functions f,g,hf, g, h are linearly dependent lower bound for the radius of convergence for the series lution of (1x3)y+4xy+y=0,x0=3\left(1-\mathrm{x}^{3}\right) y^{\prime \prime}+4 x y^{\prime}+y=0 \quad, \mathrm{x}_{0}=3 \quad is 2 - x=1\mathrm{x}=1 is a R.S.P for (x1)2y+3y+(x1)y=0(x-1)^{2} y^{\prime \prime}+3 y^{\prime}+(x-1) y=0

See Solution

Problem 26395

(d) 1eddx[xlnx1+x2]dx\int_{1}^{e} \frac{d}{d x}\left[\frac{x \ln x}{1+x^{2}}\right] d x

See Solution

Problem 26396

Q1) True or false: (5 points)
1- The form of ypy_{p} for y3y+2y=xexy^{\prime \prime \prime}-3 y^{\prime}+2 y=x e^{x} is (Ax3+Bx2)ex\left(\mathrm{Ax}^{3}+B x^{2}\right) e^{x} 2- If the roots of the indicial equation are 0.3,1.7-0.3,1.7 then the D.E. has two linearly independent solutions
3- If W(f,g,h)=sint\mathrm{W}(\mathrm{f}, \mathrm{g}, \mathrm{h})=\sin \mathrm{t} then the functions f,g,h\mathrm{f}, \mathrm{g}, \mathrm{h} are linearly dependent 4- The lower bound for the radius of convergence for the series solution of (1x3)y+4xy+y=0,x0=3\left(1-\mathrm{x}^{3}\right) y^{\prime \prime}+4 x y^{\prime}+y=0 \quad, \mathrm{x}_{0}=3 \quad is 2
5- x=1\quad \mathrm{x}=1 is a R.S.P for (x1)2y+3y+(x1)y=0(x-1)^{2} y^{\prime \prime}+3 y^{\prime}+(x-1) y=0

See Solution

Problem 26397

Pretest: Unit 5
Question 17 of 26 What is the degree of the polynomial given below? F(x)=2x3x2+5x3F(x)=2 x^{3}-x^{2}+5 x-3 A. 4 B. 5 C. 3 D. 2

See Solution

Problem 26398

Let A,BA, B be two independent events of a sample space, where P(A)=0.4P(A)=0.4, P(Bˉ)=0.6P(\bar{B})=0.6. Then P(AˉB)=P(\bar{A} \cup B)= 0.8 0.2 0.76 0.18 None of these

See Solution

Problem 26399

Find the exact value of cosπ8\cos \frac{\pi}{8}.

See Solution

Problem 26400

Rewrite the radical expression x53\sqrt[3]{x^{5}} as an expression with rational exponents. A. x25x^{\frac{2}{5}} B. x52x^{\frac{5}{2}} C. x35x^{\frac{3}{5}} D. x53x^{\frac{5}{3}}

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord