Math Statement

Problem 2201

Follow the instructions below.
Write b3b2b^{3} \cdot b^{2} without exponents. b3b2=b^{3} \cdot b^{2}= \square
Fill in the blank. b3b2=b[b^{3} \cdot b^{2}=b^{[ }

See Solution

Problem 2202

Simplify. (u4)5\left(u^{4}\right)^{5}
Write your answer without parentheses.

See Solution

Problem 2203

Find the differential of y=cos(6πx)y=\cos (-6 \pi x).

See Solution

Problem 2204

00110.0001 \quad 10.0 points For an arithmetic sequence a1=13 and d=12.a_{1}=13 \text { and } d=-\frac{1}{2} .
Find the term a23a_{23} of the sequence. 00210.0002 \quad 10.0 points Consider an arithmetic sequence where a1=10 and d=5a_{1}=10 \text { and } d=5 \text {. }
Find the term a27a_{27} of the sequence.

See Solution

Problem 2205

Compute (a) Δy\Delta y and (b) dy for the given values of xx and dx=Δx\mathrm{dx}=\Delta x. y=7x2,x=2,Δx=.4y=7-x^{2}, \quad x=-2, \quad \Delta x=.4 (a) Δy=\Delta y= \square (b) dy=d y= 16 \square

See Solution

Problem 2206

Solve the inequality for uu. 15u91-5 u \leq-9
Simplify your answer as much as possible.

See Solution

Problem 2207

Factor the common factor out of each expression. Date 1) 28n5+56n2+63n-28 n^{5}+56 n^{2}+63 n A) 7n(4n4+8n+9)7 n\left(-4 n^{4}+8 n+9\right) 2) 24r68r580r4-24 r^{6}-8 r^{5}-80 r^{4} B) 7n(4n4+n+3)7 n\left(-4 n^{4}+n+3\right) A) 8r4(3r2+r+10)-8 r^{4}\left(3 r^{2}+r+10\right) C) 7n(28n5+56n2+63n)7 n\left(-28 n^{5}+56 n^{2}+63 n\right) D) 7n(4n5+8n2+9n)7 n\left(-4 n^{5}+8 n^{2}+9 n\right) B) 8r4(3r3+r2+10r)-8 r^{4}\left(3 r^{3}+r^{2}+10 r\right) C) 8r4(3r3+r2+10)-8 r^{4}\left(3 r^{3}+r^{2}+10\right) D) 8r4(3r3+r+10)-8 r^{4}\left(3 r^{3}+r+10\right) 3) 8m36m+108 m^{3}-6 m+10 A) 2(4m33m+5)2\left(4 m^{3}-3 m+5\right) 4) 4030x+70x240-30 x+70 x^{2} B) 2(4m43m2+5)2\left(4 m^{4}-3 m^{2}+5\right) A) 10(43x+7x2)10\left(4-3 x+7 x^{2}\right) C) 2m(4m33m+5)2 m\left(4 m^{3}-3 m+5\right) B) 10x(23x+7x3)10 x\left(2-3 x+7 x^{3}\right) D) m(4m33m2+5)m\left(4 m^{3}-3 m^{2}+5\right) C) 20(2015x2+35x3)20\left(20-15 x^{2}+35 x^{3}\right) D) 10x(43x+7x2)10 x\left(4-3 x+7 x^{2}\right)

See Solution

Problem 2208

Without calculation, find one eigenvalue and two linearly independent eigenvectors of A=[222222222]A=\left[\begin{array}{lll}2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2\end{array}\right]. Justify your answer.
One eigenvalue of AA is λ=0\lambda=0 because the columns of AA are linearly dependent. Two linearly independent eigenvectors of AA are \square because the entries of each vector sum to 0 . (Use a comma to separate answers as needed.)

See Solution

Problem 2209

1. Find the derivatives of the following functions: a) y=x3sinhxy=\frac{x^{3}}{\sinh x} b) y=tanh32xy=\tanh ^{3} 2 x c) y=ecosh4x2y=e^{\cosh 4 x^{2}}

See Solution

Problem 2210

 b) y=ln(x22x+1cos4x)Lnx2+ln2x+1lncos4x2lnx+12ln2x+14lncosx2x1x+12×24(=sinx)22x+14[sinx]\begin{array}{l}\text { b) } y=\ln \left(\frac{x^{2} \cdot \sqrt{2 x+1}}{\cos ^{4} x}\right) \\ \operatorname{Ln} x^{2}+\ln \sqrt{2 x+1}-\ln \cos ^{4} x \\ 2 \ln x+\frac{1}{2} \ln 2 x+1-4 \ln \cos x \\ 2 x \frac{1}{x}+\frac{1}{2} \times 2-4(=\sin x) \\ \frac{2}{2 x}+1-4[-\sin x]\end{array}

See Solution

Problem 2211

Find the characteristic polynomial and the eigenvalues of the matrix. [9443]\left[\begin{array}{rr} 9 & 4 \\ -4 & 3 \end{array}\right]
The characteristic polynomial is \square \square. (Type an expression using λ\lambda as the variable. Type an exact answer, using radicals as needed.)

See Solution

Problem 2212

1. Write a balanced chemical equation, including physical state symbols, for the combustion of liquid nonane into gaseous carbon dioxide and gaseous water. C9H20(l)+14O2(g)9CO2(g)+10H2O(g)\mathrm{C}_{9} \mathrm{H}_{20}(l)+14 \mathrm{O}_{2}(g) \rightarrow 9 \mathrm{CO}_{2}(g)+10 \mathrm{H}_{2} \mathrm{O}(g)
2. Suppose 0.340 kg of nonane are burned in air at a pressure of exactly 1 atm and a temperature of 15.0C15.0^{\circ} \mathrm{C}. Calculate the volume of carbon dioxide gas that is produced. Round your answer to 3 significant digits. \square L

See Solution

Problem 2213

Clever | Portal Big Ideas Math:Assessment bigideasmath.com/BIM/student/assignment?studentAssignmentId=cda1057e-bdb8-45d7-80f1-8 몸ㅁㅁㅁㅣ 煰品 Play Kahootl-Enter. 0 Classroom Learn to Type I Type. BIG IDEAS MATH Course 3: CA > Chapter 3: Angles of Polygons > Section Exercises 3.3 > Exercise 36
Solve the proportion. 9x=62\frac{9}{x}=\frac{6}{2} x=18xx=18 x x \qquad \qquad 36

See Solution

Problem 2214

Given 273=k\sqrt[3]{27}=k, where kk is an integer, what is the value of kk ?

See Solution

Problem 2215

3. 10(3)2(49)3+5\frac{10-(-3)^{2}-(-4-9)}{-3+5}

See Solution

Problem 2216

8. g+12=32g+\frac{1}{2}=-\frac{3}{2}

See Solution

Problem 2217

Determine if the following vectors are orthogonal. u=[1051],v=[255]\mathbf{u}=\left[\begin{array}{r} 10 \\ 5 \\ 1 \end{array}\right], \mathbf{v}=\left[\begin{array}{r} 2 \\ -5 \\ 5 \end{array}\right]
Select the correct choice below and fill in the answer box to complete your choice. (Type an integer or a simplified fraction.) A. The vectors u\mathbf{u} and v\mathbf{v} are orthogonal because u+v=\mathbf{u}+\mathbf{v}= \square . B. The vectors u\mathbf{u} and v\mathbf{v} are not orthogonal because u+v=\mathbf{u}+\mathbf{v}= \square . C. The vectors u\mathbf{u} and v\mathbf{v} are not orthogonal because uv=\mathbf{u} \cdot \mathbf{v}= \square \square. D. The vectors u\mathbf{u} and v\mathbf{v} are orthogonal because uv=\mathbf{u} \cdot \mathbf{v}= \square .

See Solution

Problem 2218

2n+12n+22n12n2\frac{2^{n+1}-2^{n+2}}{2^{n-1}-2^{n-2}}

See Solution

Problem 2219

13. Assume A and B are 5×55 \times 5 matrices. Which of the following might be invalid? a. (7A)T=7AT(7 A)^{T}=7 A^{T} b. (AB)T=ATBT(A B)^{T}=A^{T} B^{T} c. (A+B)T=BT+AT(A+B)^{T}=B^{T}+A^{T} d. (AB)T=ATBT(A-B)^{T}=A^{T}-B^{T}
14. Given the matrices: AA is 3×5,B3 \times 5, B is 3×1,C3 \times 1, C is 2×1,D2 \times 1, D is 2×2,E2 \times 2, E is 3×3,F3 \times 3, F is 1×4,G1 \times 4, G is 4×14 \times 1. Which matrix operation is defined? a. A+B\mathrm{A}+\mathrm{B} b. C-D c. D+E\mathrm{D}+\mathrm{E} d. FG
15. The matrix [1314057200050006]\left[\begin{array}{cccc}1 & 3 & 1 & 4 \\ 0 & -5 & 7 & 2 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 6\end{array}\right] is in reduced row-echolon form a. true b. false
16. Given that AA is invertible, A1ABA^{-1} A B is not equal to a. ABA1\mathrm{ABA}^{-1} b. AA1 B\mathrm{AA}^{-1} \mathrm{~B} c. B d. BB1 B\mathrm{BB}^{-1} \mathrm{~B}
17. If AA is an 5×105 \times 10 matrix and BB is an 10×310 \times 3 matrix, then the matrix products ABA B and ATBTA^{T} B^{T} are defined. a. true b. false
18. The determinant of the matrix [111080946]\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 8 & 0 \\ 9 & 4 & 6\end{array}\right] is  a. 244.24 c. 48\begin{array}{lll}\text { a. }-24 & 4.24 & \text { c. } 48\end{array} c. 48 d. 0
19. If AA is a square matrix then det(A)=det(AT)\operatorname{det}(A)=\operatorname{det}\left(A^{T}\right) a. true b. false
20. Given 2 different vectors uu and vv in 3-space, which of the following vectors is always orthogonal to uu ? a. u+vu+v b. u-v c. u.v d. uxv
21. The trancformation T(x,y)=(2x+1,3y+2)T(x, y)=(2 x+1,3 y+2) is linear. false  matrix A=[1121=[4/31/311/31/305/31/31].\begin{aligned} & \text { matrix } A=\left[\begin{array}{l}1 \\ 1 \\ 2 \\ \\ \\ -1\end{array}=\left[\begin{array}{llr}-4 / 3 & 1 / 3 & 1 \\ 1 / 3 & -1 / 3 & 0 \\ 5 / 3 & 1 / 3 & -1\end{array}\right] .\right.\end{aligned} a. true b. false
23. The vector component of vl=(3,4)v \mathrm{l}=(3,4) in the direction of v2=(1,1)v 2=(1,1) is a. (3.5,3.5)(3.5,3.5) b. (3,3)(3,3) c. (4,5)(4,5) d. (2,2)(2,2)
24. The number of different Eigen values of the matrix [043006009]\left[\begin{array}{lll}0 & 4 & 3 \\ 0 & 0 & 6 \\ 0 & 0 & 9\end{array}\right] is  a. 1 b. 2 c. 3 d. 4\begin{array}{llll}\text { a. } 1 & \text { b. } 2 & \text { c. } 3 & \text { d. } 4\end{array} 2

See Solution

Problem 2220

1. You have a right rectangular prism and you're required to find the perimeter, area of the base, and the volume. The measurement of the given prism is as follows:  Length =60 cm Width =10 cm Height =5 cm\begin{array}{l} \text { Length }=60 \mathrm{~cm} \\ \text { Width }=10 \mathrm{~cm} \\ \text { Height }=5 \mathrm{~cm} \end{array}

See Solution

Problem 2221

The derivative of y=etan1xy=e^{\tan ^{-1} x} is:

See Solution

Problem 2222

Using an appropriate substitution (Inverse trigonometric): dxx2+6x+90=\int \frac{d x}{x^{2}+6 x+90}=

See Solution

Problem 2223

Esercizio 1. Rispondere al più a uno dei seguenti quesiti. i) Calcolare, al variare del parametro α[0,+)\alpha \in[0,+\infty), il limite per n+n \rightarrow+\infty della successione (an)n\left(a_{n}\right)_{n} tale che an=sin6nexp(2lognn32)1[1cos(1nα)],n1a_{n}=\frac{\sin \frac{\sqrt{6}}{n}}{\exp \left(\frac{2 \log n}{n^{\frac{3}{2}}}\right)-1}\left[1-\cos \left(\frac{1}{n^{\alpha}}\right)\right], \quad n \geq 1

See Solution

Problem 2224

2. Вычислить интеграл: l(iz3+3)dz\int_{l}\left(i z^{3}+3\right) d z, где ll - отрезок прямой от точки z1=1z_{1}=1 до точки z2=iz_{2}=i.

See Solution

Problem 2225

2. Solve the following set of linear equations by the matrix method: a) x1+3x2+2x3=32x1x23x3=85x1+2x2+x3=9\begin{array}{l} x_{1}+3 x_{2}+2 x_{3}=3 \\ 2 x_{1}-x_{2}-3 x_{3}=-8 \\ 5 x_{1}+2 x_{2}+x_{3}=9 \end{array} A Self-regulated Learning Module

See Solution

Problem 2226

Упражнения
1. Представить в виде многочлена:
1. (15m)2\left(\frac{1}{5}-m\right)^{2}
2. (2+18x)2\left(2+\frac{1}{8} x\right)^{2}
3. (7y+17x)2\left(-7 y+\frac{1}{7} x\right)^{2}
4. (x34)(34+x)\left(x-\frac{3}{4}\right)\left(\frac{3}{4}+x\right)
5. (4x+2y)3(4 x+2 y)^{3} II. Разложить на множители:
1. 9x26x+19 x^{2}-6 x+1
2. 16m2+24mn+9n216 m^{2}+24 m n+9 n^{2}
3. 0,09m264n20,09 m^{2}-64 n^{2}
4. 7,29x67,84y67,29 x^{6}-7,84 y^{6}
5. 27a364b327 a^{3}-64 b^{3}
6. (2x)2(3x+5)2(2-x)^{2}-(3 x+5)^{2}
7. (3m+5)264(3 m+5)^{2}-64
8. x22x3x^{2}-2 x-3
9. 7x25x+37 x^{2}-5 x+3 III. Сократить дробь
1. 4a4ba2b2\frac{4 a-4 b}{a^{2}-b^{2}}
2. 14c8b49c216b2\frac{14 c-8 b}{49 c^{2}-16 b^{2}} 4x2+20x+254x225\frac{4 x^{2}+20 x+25}{4 x^{2}-25} IV. Упростить выражение
1. 2ab234a2b3\sqrt[3]{2 a b^{2}} \cdot \sqrt[3]{4 a^{2} b}
2. abc4a3cb4\sqrt[4]{\frac{a b}{c}} \cdot \sqrt[4]{\frac{a^{3} c}{b}}
3. a6b75ab25\frac{\sqrt[5]{a^{6} \cdot b^{7}}}{\sqrt[5]{a \cdot b^{2}}}
4. 3xy23y9x23\frac{\sqrt[3]{\frac{3 x}{y^{2}}}}{\sqrt[3]{\frac{y}{9 x^{2}}}}
5. (x46)3\left(\sqrt[6]{x^{4}}\right)^{-3}
6. 7293\sqrt{\sqrt[3]{729}}
7. 933379\sqrt[3]{\sqrt[3]{9}} \cdot \sqrt[9]{3^{7}}
8. (a2b3)6\left(\sqrt{\sqrt[3]{a^{2} b}}\right)^{6}
9. (x3/4)4/5\left(x^{3 / 4}\right)^{4 / 5}
10. (a3)2(a3)3(a1)2:(a2)4\frac{\left(\mathrm{a}^{-3}\right)^{-2} \cdot\left(\mathrm{a}^{3}\right)^{-3}}{\left(\mathrm{a}^{-1}\right)^{-2}:\left(\mathrm{a}^{2}\right)^{-4}}
11. (25a3b2)2:(313a4b3)2\left(\frac{2}{5} a^{-3} b^{2}\right)^{-2}:\left(3 \frac{1}{3} a^{-4} b^{3}\right)^{2}

See Solution

Problem 2227

Having that gcd(a,b)=1\operatorname{gcd}(a, b)=1, prove the following- (i) gcd(2a+b,a+2b)=1\operatorname{gcd}(2 a+b, a+2 b)=1 or 3 . (ii) god(a+b,a2+b2)=1\operatorname{god}\left(a+b, a^{2}+b^{2}\right)=1 or 2 .

See Solution

Problem 2228

5. Найти разложение функции в ряд Лорана в точке z0z_{0} по степеням zz0z-z_{0}. Указать главную и правильную части ряда и его область сходимости. z+2i(z1)2,z0=1\frac{z+2 i}{(z-1)^{2}}, z_{0}=1

See Solution

Problem 2229

Example: Differentiate the following functions.
1. f(x)=(x4+3)50f(x)=\left(x^{4}+3\right)^{50}
2. g(t)=t3sintg(t)=\sqrt{t^{3} \sin t}

See Solution

Problem 2230

If f(x)=3x1x2f(x)=\frac{3 x-1}{x-2} then f1(x)=f^{-1}(x)= A) x2x3\frac{x-2}{x-3} B) 2x1x3\frac{2 x-1}{x-3} C) 2x+1x3\frac{2 x+1}{x-3} D) x32x1\frac{x-3}{2 x-1}

See Solution

Problem 2231

If f1(x)=1x9f^{-1}(x)=\frac{1}{x-9} then Df=D_{f}= A) R{9}\mathbb{R}-\{9\} B) R{1}\mathbb{R}-\{1\} C) R\mathbb{R} D) R{0}\mathbb{R}-\{0\}

See Solution

Problem 2232

Graph the following. Identify the Amplitude and Period of each. 1.) y=7sinxy=7 \sin x 2.) y=3cosxy=-3 \cos x 3.) y=12cosxy=\frac{1}{2} \cos x 4.) y=23sinxy=\frac{2}{3} \sin x
5. y=sin(2x)y=\sin (2 x) 6.) y=cos(13x)y=\cos \left(\frac{1}{3} x\right) 7.) y=sin(x)y=\sin (-x) 8.) y=cos(πx)y=\cos (\pi x) 9.) y=4sin(2x)y=4 \sin (2 x) 10.) y=2cos(14x)y=-2 \cos \left(\frac{1}{4} x\right)

See Solution

Problem 2233

• Problem 3: (9 points) Find the local maximum and minimum values and saddle points of the function f(x, y) = x³- xy + y³

See Solution

Problem 2234

1. 12z2+312+5z3+6z12z2=(z2z+(z+(z2)+=z2+\begin{array}{l} \frac{1}{2} z^{2}+3 \frac{1}{2}+5 z-3+6 z-\frac{1}{2} z^{2} \\ =\left(\square z^{2}-\square z+\left(\square z+\left(\square z^{2}\right)+\square\right.\right. \\ =\square z^{2}+\square \\ \square\end{array}

See Solution

Problem 2235

2. 4y+9y4 y+9 y

See Solution

Problem 2236

3×4103 \times \frac{4}{10}

See Solution

Problem 2237

6. 12x+12+12x+12\frac{1}{2} x+\frac{1}{2}+\frac{1}{2} x+\frac{1}{2}

See Solution

Problem 2238

13. z4+z4+z4+z4z^{4}+z^{4}+z^{4}+z^{4}

See Solution

Problem 2239

=(112z2[12z2)=\left(1 \frac{1}{2} z^{2}-\left[\frac{1}{2} z^{2}\right)\right.

See Solution

Problem 2240

2 A medicine manufacturer produces pain relieving tablets. Each tablet is in the shape of a solid circular cylinder with base radius x mmx \mathrm{~mm} and height hh mm , whose surface area is A=2πx2+120xA=2 \pi x^{2}+\frac{120}{x} where AA is measured in mm2\mathrm{mm}^{2}. If the manufacturer wishes to minimize the surface area of each tablet, find the value of xx for which AA is a minimum, to 2 decimal places. A. 2.21 B. 2.12 C. 1.23 D. 1.32

See Solution

Problem 2243

38÷14=\frac{3}{8} \div \frac{1}{4}=

See Solution

Problem 2244

2÷323=2 \div 3 \frac{2}{3}=
Sulmity

See Solution

Problem 2245

10. Given that x22bx+225x^{2}-2 b x+225 is a perfect square, find the possible values of bb.

See Solution

Problem 2246

Differentiate the function. y=(9x4x+4)(x5+3)y=\left(9 x^{4}-x+4\right)\left(-x^{5}+3\right)

See Solution

Problem 2247

Use the quotient rule to find the derivative of the following. y=x23x+1x2+5y=\frac{x^{2}-3 x+1}{x^{2}+5}

See Solution

Problem 2248

3) f(x)=2(5x+1)f(x)=2(5 x+1) f(0)=f(2)=f(2)=\begin{array}{l} f(0)= \\ f(-2)= \\ f(2)= \end{array}

See Solution

Problem 2249

Solve for xx. y=(7+x)my=(7+x) m

See Solution

Problem 2250

What is the formula for the volume of a right cone with base area BB and height hh ? A. V=13BhV=\frac{1}{3} B h B. v=Bhv=B h C. V=2Bh2V=2 B h^{2} D. v=13Bhv=-\frac{1}{3} B h

See Solution

Problem 2251

Create the nnth Taylor's Polynomial for ln(x)\ln (x) about x=1x=1.

See Solution

Problem 2252

If f(x)=x2+5x6f(x)=\sqrt{-x^{2}+5 x-6}, then what is dom(f)\operatorname{dom}(f) ? (A) (,2][3,)(-\infty, 2] \cup[3, \infty) (B) [2,3][2,3] (C) (,2)(3,)(-\infty, 2) \cup(3, \infty) (D) (,2)(3,)(-\infty,-2) \cup(3, \infty) (E) (,2](3,)(-\infty,-2] \cup(3, \infty)

See Solution

Problem 2253

\#49) {3x18, for x<5,1, for 5x<1,x+2, for x1\left\{\begin{array}{c}-3 x-18, \quad \text { for } x<-5, \\ 1, \quad \text { for }-5 \leq x<1, \\ x+2, \quad \text { for } x \geq 1\end{array}\right. a) b) \begin{tabular}{|c|c|} \hlinexx & yy \\ \hline-5 \\ \hline-3 \\ \hline 0 & \\ \hline \end{tabular}

See Solution

Problem 2254

The graph of y=lnxy=\ln x after reflecting it about the xx-axis then shifting it 2 units to the left is the graph of (A) y=ln(x+2)y=-\ln (x+2) (B) y=ln(x2)y=-\ln (x-2) (C) y=ln(2x)y=\ln (2-x) (D) y=ln(x2)y=\ln (-x-2) (E) y=ln(2x)y=-\ln (2-x)

See Solution

Problem 2255

The graph of y=lnxy=\ln x after reflecting it about the xx-axis then shifting it 2 units to the left is the graph of (A) y=ln(x+2)y=-\ln (x+2) (B) y=ln(x2)y=-\ln (x-2) (C) y=ln(2x)y=\ln (2-x) (D) y=ln(x2)y=\ln (-x-2) (E) y=ln(2x)y=-\ln (2-x)

See Solution

Problem 2256

The equation of the following conic section is (A) 9x2y2=369 x^{2}-y^{2}=36 (B) x29y2=36x^{2}-9 y^{2}=36 (C) x2+3y2=6x^{2}+3 y^{2}=6 (D) 9x2+y2=369 x^{2}+y^{2}=36 (E) x2+9y2=36x^{2}+9 y^{2}=36

See Solution

Problem 2257

TUWVUW.\angle T U W \cong \angle V U W .
Which term describes UW\overline{U W} ? perpendicular bisector altitude angle bisector median

See Solution

Problem 2258

If f(x)=23x1f(x)=2-3^{x-1}, then what is range of ff ? (A) (,2)(-\infty, 2) (B) (,2](-\infty, 2] (C) (2,)(2, \infty) (D) [2,)[2, \infty) (E) (,0)(-\infty, 0)

See Solution

Problem 2259

ewrite f(x)=(ax+b)/(x+c)f(x)=(a x+b) /(x+c) in f(x)=a+d/(x+c)f(x)=a+d /(x+c) form. 5) f(x)=x3x4f(x)=\frac{x-3}{x-4}

See Solution

Problem 2260

et is launched from a platform 20 feet above the ground with an initial velocity of 60 feet per second. Its height is given by h(t)=16t2+60t+20h(t)=16t2h(t)=-16 t 2+60 t+20 h(t)=-16 t^{\wedge} 2 +60t+20 h(t)=16t2+60t+20+60 \mathrm{t}+20 \mathrm{~h}(\mathrm{t})=-16 \mathrm{t} 2+60 \mathrm{t}+20. Find the time it takes to reach maximum height.

See Solution

Problem 2261

Solve the rational inequality. 7) 4x+75x2+6>0\frac{-4 x+7}{5 x^{2}+6}>0

See Solution

Problem 2262

4x+5y=7 Let 1xbe4a+5y=7 (1) 3x+4y=53a+4y=5 (2) \begin{array}{l} \frac{4}{x}+5 y=7 \\ \text { Let } \frac{1}{x} b e \\ 4 a+5 y=7 \rightarrow \text { (1) } \\ \frac{3}{x}+4 y=5 \\ 3 a+4 y=5 \rightarrow \text { (2) } \end{array}

See Solution

Problem 2263

The weekly revenue from the sale of xx units of a service is given by R(x)=110x5x2R(x)=110 x-5 x^{2} thousand dollars, where 0x190 \leq x \leq 19. How many units should be sold to maximize the revenue?

See Solution

Problem 2264

Simple cless - work (x+4)8x35x×25x1125x+1163/481322×3\begin{array}{l} \frac{(x+4)^{8}}{x^{-3}} \\ \frac{5^{x} \times 25^{x-1}}{125^{x+1}} \\ \frac{163 / 4-8 \frac{1}{3}}{2^{2} \times 3} \end{array}
Solution

See Solution

Problem 2265

x+y+z=5xy+4z=25x+y+z=9\begin{array}{r}x+y+z=5 \\ x-y+4 z=2 \\ 5 x+y+z=9\end{array}

See Solution

Problem 2266

1=3x+2x2y21 = 3x + 2x^2y^2 Implicit differentiation

See Solution

Problem 2267

(15 points) Use an analytic method to solve 4x3=2x3\sqrt{4 x-3}=2 x-3

See Solution

Problem 2268

Find the average rate of change of the function f(x)=x3+2x25x+3 f(x) = x^3 + 2x^2 - 5x + 3 over the interval [1,5][1, 5].

See Solution

Problem 2269

PROBLEM 2: GRAPHING A LINE USING INTERCEPTS Graph each equation using the xx - and yy-intercepts.
9. x2y=2x-2 y=-2
10. 2x+5y=202 x+5 y=20
11. 2x3y=122 x-3 y=12
12. x+3y=6-x+3 y=6
13. 6x2y=186 x-2 y=18
14. 4x+3y=18-4 x+3 y=18

PROBLEM 3: GRAPHING HORIZONTAL AND VERTICAL LINES If A=0A=0 in the standard form Ax+By=CA x+B y=C, then you can write the equation in the form y=by=b, where bb is a constant. If B=0B=0, you can write the equation in the form x=ax=a, where aa is a constant. The graph of y=by=b is a horizontal line, and the graph of x=ax=a is a vertical line.

See Solution

Problem 2270

8) 2x3y=62 x-3 y=6

See Solution

Problem 2271

12y3(2xy)-12 y^{3}(2 x y)
Answer Attempt 1 out of 2

See Solution

Problem 2272

{x+y=8xy=4\left\{\begin{array}{l}x+y=-8 \\ x-y=-4\end{array}\right.

See Solution

Problem 2273

Find the average rate of change of the function f(x)=2x1x+4 over the interval [3,8].\text{Find the average rate of change of the function } f(x) = \frac{2x-1}{x+4} \text{ over the interval } [-3, 8].

See Solution

Problem 2274

(1 point)
The total cost (in hundreds of dollars) of producing xx slide rules per day is C(x)=12+2x+20C(x)=12+\sqrt{2 x+20}
Find the marginal cost at each production level xx given below: x=25x=40\begin{array}{l} x=25 \square \\ x=40 \square \end{array}

See Solution

Problem 2275

27. Niech A={(2,1),(1,1)},B={(1,3),(0,1)},C={(0,1),(1,4)}\mathcal{A}=\{(2,1),(1,1)\}, \mathcal{B}=\{(1,3),(0,1)\}, \mathcal{C}=\{(0,1),(1,4)\} i niech φ:R2R2\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} będzie takim przekształceniem liniowym, że M(φ)AB=(1234)M(\varphi)_{\mathcal{A}}^{\mathcal{B}}=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right). Znaleźć M(φ)ACM(\varphi)_{\mathcal{A}}^{\mathcal{C}}.

See Solution

Problem 2276

Consider the following function: f(x)=eeeexf(x)=e^{e^{e^{e^{x}}}}. f(x)=f^{\prime}(x)=

See Solution

Problem 2277

3. A regression was run to determine if there is a relationship between the diameter ( xx,ininches) of a silver maple silver and the tree's age ( yy,ininches). The results of the regression are below. Use this to predict the age of a silver maple tree with diameter 22 inches. Round your answer to three decimal places. y=ax+ba=3.679b=0.54r=0.967\begin{array}{l} y=a x+b \\ a=3.679 \\ b=-0.54 \\ r=0.967 \end{array} age of tree: \qquad y=80.936y=80.936

See Solution

Problem 2278

13. Graph f(x)=2x(x1)(2x4)(x+2)f(x)=-2 x(x-1)(2 x-4)(x+2)
Left behavior: Right behavior:

See Solution

Problem 2279

Simplify. Express your answer as a single fraction in simplest form. ww+29\frac{w}{w+2}-9

See Solution

Problem 2280

x4=7\sqrt{x-4}=7

See Solution

Problem 2281

2. (i) x2=5+x3\frac{x}{2}=5+\frac{x}{3}

See Solution

Problem 2282

Factor the expression completely. 35x2+63x435 x^{2}+63 x^{4}
Answer Attempt 1 out of 2

See Solution

Problem 2283

1. 25+36+14\frac{2}{5}+\frac{3}{6}+\frac{1}{4}
7. 23×2534\frac{2}{3} \times \frac{25}{34}
2. (34+75)910\left(\frac{3}{4}+\frac{7}{5}\right)-\frac{9}{10}
8. 25×76×103\frac{2}{5} \times \frac{7}{6} \times \frac{10}{3}
3. 1213×34\frac{12}{13} \times \frac{3}{4}
9. 920+1710+21100\frac{9}{20}+\frac{17}{10}+\frac{21}{100}
4. 13×15\frac{1}{3} \times \frac{1}{5}
10. 953614\frac{9}{5}-\frac{3}{6}-\frac{1}{4}
5. (75÷68)+410\left(\frac{7}{5} \div \frac{6}{8}\right)+\frac{4}{10}
11. 5619÷2638\frac{56}{19} \div \frac{26}{38}
6. (78+94)+311\left(\frac{7}{8}+\frac{9}{4}\right)+\frac{3}{11}
12. 910÷110\frac{9}{10} \div \frac{1}{10}

See Solution

Problem 2284

3. (i) 7(x2)=2(2x4)7(x-2)=2(2 x-4)

See Solution

Problem 2285

4) Determine the exact value for each: a) cos27π6sin211π2\cos ^{2} \frac{7 \pi}{6}-\sin ^{2} \frac{11 \pi}{2} b) 2csc211π62-\csc ^{2} \frac{11 \pi}{6}

See Solution

Problem 2286

Find the derivative of the function f(x)=x5 f(x) = x^5 .

See Solution

Problem 2287

f(x)=4x4f(x) = \frac{4}{\sqrt[4]{x}} Encuentra la derivada de f(x) f(x) .

See Solution

Problem 2288

19z2+31z44\frac{1}{9 z^{2}+31 z-4}-4

See Solution

Problem 2289

What is the value of cc in the system below? 2a+3b+2c=72a+3b=295a=20\begin{array}{l} -2 a+3 b+2 c=7 \\ 2 a+3 b=29 \\ 5 a=20 \end{array}

See Solution

Problem 2290

12x=4x+312^{x}=4^{x+3}

See Solution

Problem 2291

2. 96÷(97)396 \div(9-7)^{3}

See Solution

Problem 2292

3. 43+36÷(3+1)24^{3}+36 \div(3+1) \cdot 2

See Solution

Problem 2293

1. 2724227-2 \cdot 4^{2}

See Solution

Problem 2294

What is the solution to log2(9x)log23=3\log _{2}(9 x)-\log _{2} 3=3 ? x=38x=\frac{3}{8} x=83x=\frac{8}{3} x=3x=3 x=9x=9

See Solution

Problem 2295

(1) Let A=[210042635]A=\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 4 & 2 \\ 6 & 3 & 5\end{array}\right]. (a) Carry A to an upper triangular UU by a series of elementary row operations. (b) Find a matrix EE such that EA=UE A=U. (c) Multiply by E1=LE^{-1}=L to factor AA into LUL U.

See Solution

Problem 2296

Find the derivative of the function f(x)=73x2+5x3f(x)=\frac{73}{x^{-2}}+\frac{5}{x^{3}}.

See Solution

Problem 2297

11 a Calculate dydx\frac{d y}{d x} when y=x26x+1y=x^{2}-6 x+1. b Solve the equation dydx=0\frac{d y}{d x}=0. c Find the coordinates of the turning point of this curve.

See Solution

Problem 2298

Do Now Practice
Calculate the slope of the line containing the points: i) (1,1)(1,1) and (2,2)(2,2) ii) (1, 2) and (2, 1) iii) (5,1)(5,1) and (2,1)(2,1)

See Solution

Problem 2299

secx+tanxsinx=cscxsecxtanx\frac{\sec x+\tan x}{\sin x}=\frac{\csc x}{\sec x-\tan x}

See Solution

Problem 2300

3xx5x+36x30450x2+3x\frac{3x}{x-5} - \frac{x+3}{6x-30} \cdot \frac{450}{x^2+3x}

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord