Math Statement

Problem 22701

113x=411 - \sqrt{3}x = 4

See Solution

Problem 22702

Which part of the expression below represents an unknown quantity?
7+y7 + y

See Solution

Problem 22703

20 4(4)93=05=0\frac{4-(4)}{9-3}=\frac{0}{5}=0

See Solution

Problem 22704

90×67+5400=603090 \times 67 + 5400 = 6030

See Solution

Problem 22705

90×6790 \times 67 6363 +5,400+ 5,400 6,0306,030

See Solution

Problem 22706

What are the roots of the following polynomial: x39xx^{3}-9 x ? x=0,3x=0,3 x=3x=3x=3,0x=-3,0 x=3,0,3x=-3,0,3 x=3,3x=-3,3

See Solution

Problem 22707

Module 3.4  If f(x)=2x+1 and g(x)=3x1, then f(g(x))=\text { If } f(x)=2 x+1 \text { and } g(x)=3 x-1 \text {, then } f(g(x))= 5x5 x 6x+26 x+2 6x2+x16 x^{2}+x-1 6x16 x-1 x2x-2

See Solution

Problem 22708

Question 4 (7 points) Find the slope of the line tangent to the curve given parametrically by x=2e6tx = 2e^{6t}, y=(t4)2y = (t-4)^2 at the point (x,y)=(2,16)(x,y) = (2,16). Your score will be based entirely on the work you submit - no need to fill the box below.

See Solution

Problem 22709

3. Simplify 50x3y5\sqrt{50 x^{3} y^{5}}. 5xy2xy5 x y \sqrt{2 x y} 5xy22xy5 x y^{2} \sqrt{2 x y} 5x2y22y5 x^{2} y^{2} \sqrt{2 y} xy32xx y^{3} \sqrt{2 x}

See Solution

Problem 22710

3,864+7=3,864+7=

See Solution

Problem 22711

1.9(14)=1.9 \cdot\left(\frac{1}{4}\right)= 19/4019 / 40
Complitis
Answer as a decimal with four decimal places. 2.50.3=2.5 \cdot 0.3= \square CONE \square Intro Previous Activity 6 of 12

See Solution

Problem 22712

Evaluate. Round your answer to the nearest thousandth. ln51=\ln{51} =

See Solution

Problem 22713

sinθcos3θdθ\int \frac{\sin \theta}{\cos^3 \theta} d\theta

See Solution

Problem 22714

Which of the following functions exhibits even symmetry? x2+xx^{2}+x x2+2x7x^{2}+2 x-7 x2|x-2| x22x+1\left|x^{2}-2 x+1\right| x2|x|-2

See Solution

Problem 22715

Use Newton's method to estimate the two zeros of the following function. Start with x0=0x_0 = 0 for the xx2+9x - x^2 + 9
If x0=0x_0 = 0, then x2=4.73684x_2 = -4.73684. (Do not round until the final answer. Then round to five decimal places as needed.)
If x0=4x_0 = 4, then x2=3.57218x_2 = 3.57218. (Do not round until the final answer. Then round to five decimal places as needed.)

See Solution

Problem 22716

Solve x216x+60=12x^{2}-16 x+60=-12 by completing the steps. First, subtract \square from each side of the equation. DONE

See Solution

Problem 22717

11) 2172 - 17 + 72

See Solution

Problem 22718

Find X2X_2 (the probability distribution of the system after two observations) for the distribution vector X0X_0 and the transition matrix TT.
X0=[0.250.600.15]X_0 = \begin{bmatrix} 0.25 \\ 0.60 \\ 0.15 \end{bmatrix}, T=[0.10.10.20.80.70.40.10.20.4]T = \begin{bmatrix} 0.1 & 0.1 & 0.2 \\ 0.8 & 0.7 & 0.4 \\ 0.1 & 0.2 & 0.4 \end{bmatrix}
X2=[0.000.000.00]X_2 = \begin{bmatrix} \phantom{0.00} \\ \phantom{0.00} \\ \phantom{0.00} \end{bmatrix}

See Solution

Problem 22719

22x+1=18x272^{2x+1} = 18x - 27 2x218x+28=02x^2 - 18x + 28 = 0
4. log2(x+2)log2(x1)=1\log_2(x+2) - \log_{\sqrt{2}}(x-1) = 1 log2(x+2)log2(x1)log2212=log22\log_2(x+2) - \frac{\log_2(x-1)}{\log_2 2^{\frac{1}{2}}} = \log_2 2 log2(x+1)\log_2(x+1)
ANS: x=2.5x = 2.5

See Solution

Problem 22720

b=a+x23b = \frac{a+x^2}{3} Make x the subject.

See Solution

Problem 22721

Solve the system by the addition method. {x23y2=114x2+y2=8\left\{\begin{array}{l} x^{2}-3 y^{2}=-11 \\ 4 x^{2}+y^{2}=8 \end{array}\right.
The solution set is \square \}. (Simplify your answer. Type an ordered pair. Use a comma to separate answers as needed.)

See Solution

Problem 22722

8. 3π/5rad3 \pi / 5 \mathrm{rad} to deg

See Solution

Problem 22723

Solve the inequality and graph the solution on the real number line. (x4)21(x-4)^{2} \geq 1

See Solution

Problem 22724

It is known that limx0sin(2x)2x=1\lim_{x \to 0} \frac{\sin(2x)}{2x} = 1. What is limx0cos(5x)8xcot(2x)\lim_{x \to 0} \frac{\cos(5x)}{8x \cot(2x)}?

See Solution

Problem 22725

H0:μ=20H_0: \mu = 20 Ha:μ<20H_a: \mu < 20 Use the following information: n=48n = 48, X=18\overline{X} = 18, and σ=4.6\sigma = 4.6 To find the test statistic (Step 2).

See Solution

Problem 22726

Find the quotient of the polynomial. (2x2+5x12)÷(2x3)\left(2 x^{2}+5 x-12\right) \div(2 x-3)

See Solution

Problem 22727

Solve the system by the addition method. {x24y2=322x2+y2=17\begin{cases} x^2 - 4y^2 = -32 \\ 2x^2 + y^2 = 17 \end{cases} The solution set is {}\{\}. (Simplify your answer. Type an ordered pair. Use a comma to separate answers as needed.)

See Solution

Problem 22728

(t5)(t+5)(t-5)(t+5)

See Solution

Problem 22729

Question What is the y-intercept of the polynomial f(x)f(x) defined below? Write the y-value only.
f(x)=6x39x2+3xf(x) = -6 - x^3 - 9x^2 + 3x
Answer Attempt 1 out of 3 Submit Answer

See Solution

Problem 22730

Find all solutions to the equation x3+9x+5x2=45x^{3}+9 x+5 x^{2}=-45 5,3,3-5,-3,3 3,3,5-3,3,5 5,3i,3i5,-3 i, 3 i 5,3i,3i-5,-3 i, 3 i

See Solution

Problem 22731

Without calculating each answer will be rational or irrational. 5+7.289+π rational 23.2+16 irrational \begin{array}{l} \sqrt{5}+7.28 \\ -9+\pi \square \text { rational } \\ 23 . \overline{2}+\sqrt{16} \text { irrational } \end{array}
DONE

See Solution

Problem 22732

Explain why the following problem will have an irrational answer. 4.125+34.125+\sqrt{3}
The sum is a fraction. The sum is a repeating decimal. The sum is a non-repeating non-terminating decimal.

See Solution

Problem 22733

Solve the system by the method of your choice.
x2+2y2=729x^2 + 2y^2 = 729 x+y=27x + y = 27
Select the correct choice below and, if necessary, fill in the answer box to complete your choice.
A. The solution set is {}\{\}. (Type an ordered pair, using integers or simplified fractions for the coordinates. Use a comma to separate answers as needed.)
B. There is no solution.

See Solution

Problem 22734

Explain why the following problem will have an irrational answer. 4.125+34.125+\sqrt{3}
The sum is a fraction. The sum is a repeating decimal. The sum is a non-repeating non-terminating decimal.

See Solution

Problem 22735

Which transformations are applied to g(x)g(x) to produce the function f(x)f(x)? Complete the table below to show which transformation is used in the function.
f(x)=g(x)f(x) = -g(x) f(x)=g(x)7f(x) = g(x) - 7 f(x)=0.5g(x)f(x) = 0.5g(x) Translation down Reflection Compression

See Solution

Problem 22736

19) 5=x145 = \frac{x}{14}

See Solution

Problem 22737

What is the following product? Assume x0x \geq 0. x23x34\sqrt[3]{x^{2}} \cdot \sqrt[4]{x^{3}} xxx \sqrt{x} x512\sqrt[12]{x^{5}} x(x512)x\left(\sqrt[12]{x^{5}}\right) x6x^{6}

See Solution

Problem 22738

aı and irrationaı Answers
Explain why the following problem will have an irrational answer. 5×7.14\sqrt{5} \times 7.14
The product is a fraction. The product is a repeating decimal. The product is a non-repeating non-terminating decimal.

See Solution

Problem 22739

10) According to the Rational Zero Theorem, list all possible rational roots of P(x)=88x43x2+4x1P(x) = \frac{8}{8}x^4 - 3x^2 + 4x - 1

See Solution

Problem 22740

The arithmetic sequence 90,82,74,66,90, 82, 74, 66, \dots is given. What is the explicit form of the sequence?
A. an=8n+98a_n = -8n + 98 B. an=8n+90a_n = -8n + 90 C. an=8n+98a_n = 8n + 98 D. an=8n+90a_n = 8n + 90

See Solution

Problem 22741

Simplify the product w12w+2w2×9w3+54w26w26w,w=6,0,1.\frac{w}{12w + 2w^2} \times \frac{9w^3 + 54w^2}{6w^2 - 6w}, w = -6, 0, 1. The answer is
Select one: a. 3w4(w1)\frac{3w}{4(w-1)} b. 34(w1)\frac{3}{4(w-1)} c. 3w4(w+1)\frac{3w}{4(w+1)} d. 34(w+1)\frac{3}{4(w+1)}

See Solution

Problem 22742

8.33×1448 . \overline{33} \times \sqrt{144}
DONE

See Solution

Problem 22743

Graph the following equation by plotting points. Let x=3,2,1,0,1,2,x = -3, -2, -1, 0, 1, 2, and 33. y=5xy = 5|x|

See Solution

Problem 22744

Find the exact value of the expression. tan(sin1(2425))\tan \left(\sin ^{-1}\left(\frac{24}{25}\right)\right)

See Solution

Problem 22745

Fractions Order of operations with fractions: Problem type 2 Evaluate. 78+14÷67\frac{7}{8} + \frac{1}{4} \div \frac{6}{7} Write your answer in simplest form.

See Solution

Problem 22746

Fractions Order of operations with fractions: Problem type 2 Evaluate. 13÷6719\frac{1}{3} \div \frac{6}{7} - \frac{1}{9} Write your answer in simplest form.

See Solution

Problem 22747

44^* Given the parametric equations x(t)=1+2sintx(t) = 1 + 2\sin{t} and y(t)=ln(1+cost)y(t) = \ln(1+\cos{t}) for tt on (0,2π)(0, 2\pi) (Put Tstep=0.05T_{step} = 0.05, Xmin=2X_{min} = -2, Xmax=4X_{max} = 4, Ymin=4Y_{min} = -4, Ymax=2Y_{max} = 2)
a) state the range of xx and the range of yy. x[1,3]x \in [1, 3] y[0,0.7]y \in [0, 0.7]
b) The curve's asymptote actually intersects the curve at a point P. What are the (x,y)(x, y) coordinates of P? 1+2sint=ln(1+cost)1 + 2\sin{t} = \ln(1+\cos{t})
c) Show that the derivative dydx\frac{dy}{dx} can be represented by cost1sin2t\frac{\cos{t}-1}{\sin{2t}} y=sint1+costy' = \frac{\sin{t}}{1+\cos{t}}
d) Show algebraically limt0dydx=0\lim_{t \to 0} \frac{dy}{dx} = 0 limy=sint1+cost=sin(0)1+(cos(0))=02=0\lim y' = \frac{-\sin{t}}{1+\cos{t}} = \frac{-\sin(0)}{1+(\cos(0))} = \frac{0}{2} = 0
e) Set up the integral that described the area under the curve in the first and second quadrant

See Solution

Problem 22748

Rewrite each linear equation in standard form. Then, state the values for A,BA, B, and CC. Show all work.  4.4.1) 0.09x0.01y=0.39\text { 4.4.1) } 0.09 x-0.01 y=0.39 \rightarrow A=A= \qquad B=B= \qquad , C=C= \qquad Work:

See Solution

Problem 22749

C=]2;+[,B=[4;5]A=[;3]:3A(BC),BC ، AB : \begin{array}{l} C=] 2 ;+\infty[, B=[-4 ; 5] \cdot A=[-\infty ; 3]: 3 \\ \text {. } A \cap(B \cup C), B \cup C \text { ، } A \cap B \text { : } \end{array}

See Solution

Problem 22750

Given the equation y=2sin(4π3x16π3)+8y = 2\sin(\frac{4\pi}{3}x - \frac{16\pi}{3}) + 8
The amplitude is:
The period is:
The horizontal shift is: ______ units to the Select an answer
The midline is: y=y =

See Solution

Problem 22751

Question
Solve the equation for all real solutions in simplest form. 4y214y+9=04 y^{2}-14 y+9=0

See Solution

Problem 22752

\ln 2x + 3(\ln x - \ln y)

See Solution

Problem 22753

5. Use the definition of the definlle integral to evalvate 38(x29)dx\int_{3}^{8}\left(x^{2}-9\right) d x

See Solution

Problem 22754

If f(x)=x39f(x) = x^3 - 9, show that f1(x)=x+93f^{-1}(x) = \sqrt[3]{x+9}.
Select the correct choice below and fill in the answer box(es) within your choice.
A. The inverse is f1(x)=x+93f^{-1}(x) = \sqrt[3]{x+9} because (f1f)(x)=(f^{-1} \circ f)(x) = and (ff1)(x)=(f \circ f^{-1})(x) = .
B. The inverse is f1(x)=x+93f^{-1}(x) = \sqrt[3]{x+9} because 1f(x)=\frac{1}{f(x)} = .
C. The inverse is not f1(x)=x+93f^{-1}(x) = \sqrt[3]{x+9}.

See Solution

Problem 22755

Decimals, Proportions, Percents Converting a decimal to a mixed number and an improper fraction in... Write 2.0682.068 as a mixed number and as an improper fraction. Write your answers in simplest form. mixed number: improper fraction:

See Solution

Problem 22756

If a1=7a_{1}=7 and an=2an1+3a_{n}=-2 a_{n-1}+3 then find the value of a4a_{4}.
Answer Attempt 1 out of 4 \square

See Solution

Problem 22757

Solve for *
7. 5x+2=3x+12\sqrt{5 x+2}=\sqrt{3 x+12}

See Solution

Problem 22758

Du hast die Funktion f(x)=0,5x2+5,5f(x)=-0,5 x^{2}+5,5. Du musst zeigen, dass der Punkt A(2|3,5) auf der Parabel f liegt. Dann begründen, dass deshalb auch B(-2|3,5) auf der Parabel f liegt. Dann den Umfang vom Rechteck ABCD berechnen und noch so ein Rechteck mit A2(1|5) zeichnen. Dann sollst du begründen, dass man mit 2*2x+2(-0,5x² +5,5)+5,5) jedes Rechteck unter der Parabel f berechnen kann, wobei x die xKoordinate vom Punkt A ist. Dann durch Termumformung zeigen, dass 22x+2(0,5x2+5,5)=2 * 2 x+2\left(-0,5 x^{2}+5,5\right)=- x2+4x+11x^{2}+4 x+11 ist. Und noch berechnen für welches xx2+4x+11=14,75x \quad-x^{2}+4 x+11=14,75 ist und erklären was das im Kontext bedeutet. Zuletzt noch den Scheitelpunkt u(x)=x2+4x+11u(x)=-x^{2}+4 x+11 berechnen und erklären was

See Solution

Problem 22759

Solve for xx. (SHOW WORK NEATLY)
1. 82x+310=308 \sqrt{2 x+3}-10=30

See Solution

Problem 22760

(x63)3/21=26(x-63)^{3 / 2}-1=26

See Solution

Problem 22761

I={xR / x12}I = \{x \in \mathbb{R} \ / \ x \le \frac{1}{2}\}, J={xR / x<1}J = \{x \in \mathbb{R} \ / \ |x| < 1\} et K=]1;2]K = ]-1; \sqrt{2}]
1) Ecrire II et JJ sous forme d'intervalles 2) Déterminer IKI \cap K et JKJ \cup K 3) Soit aIKa \in I \cap K a) Encadrer aa et montrer que : 1412a+3<1\frac{1}{4} \le \frac{1}{2a+3} < 1 b) développer puis réduire (2a+3)2(2a+3)^2

See Solution

Problem 22762

What is the decimal form of 215?\frac{21}{5} ? \square (Simplify your answer. Type an integer or a decimal.)
Get more help Clear

See Solution

Problem 22763

1.2÷3=?1.2 \div 3 = ?
Which number is the quotient?
0.04 0.4 4 40

See Solution

Problem 22764

The polynomial function B(x)=x3+0x221x+20B(x) = x^3 + 0x^2 - 21x + 20 has a known factor of (x4)(x-4). Rewrite B(x)B(x) as a product of linear factors.

See Solution

Problem 22765

Solve. 0.13x+0.7(x2)=0.01(3x3)0.13 x+0.7(x-2)=0.01(3 x-3)
Select the correct choice below and, if necessary, fill in the answer box t complete your choice. A. x=x= \square (Type an integer or a simplified fraction.) B. The solution is all real numbers. C. There is no solution.

See Solution

Problem 22766

For the polynomial function f(x)=x32x25x+6f(x) = x^3 - 2x^2 - 5x + 6, we have f(0)=6f(0) = 6, f(2)=4f(2) = -4, f(3)=0f(3) = 0, f(1)=8f(-1) = 8, f(1)=0f(1) = 0. Rewrite f(x)f(x) as a product of linear factors. List the values in order from smallest to largest.

See Solution

Problem 22767

4x+5y+4=04x + 5y + 4 = 0 (4,1)(-4, -1) Find the point on the line 4x+5y+4=04x + 5y + 4 = 0 which is closest to the point (4,1)(-4, -1). Answer is

See Solution

Problem 22768

cos(3tanθ)dθ\int \cos (3 \tan \theta) d \theta

See Solution

Problem 22769

3 R3
3. 7 \longdiv { 9 4 8 }

See Solution

Problem 22770

Simplify each radical expression as much as possible. Assume that the variables represent any real numbers. Use the absolute value button only when necessary. (a) x99=\sqrt[9]{x^{9}}= \square (b) (25z)44=\sqrt[4]{(2-5 z)^{4}}= \square

See Solution

Problem 22771

Complete the following statement. Write your answer as a decimal or whole number. \square %\% of $3.50=$0.35\$ 3.50=\$ 0.35

See Solution

Problem 22772

Factor. 8x+168 x+16

See Solution

Problem 22773

29. Let W={[a3c+e2b+cd2a+e]:a,b,c,d,eR}W=\left\{\left[\begin{array}{c}a-3 c+e \\ 2 b+c-d \\ 2 a+e\end{array}\right]: a, b, c, d, e \in \mathbb{R}\right\}. (a) Show that WW is a subspace of R3\mathbb{R}^{3}. (b) Find a basis for WW. (c) Find an orthonormal basis for WW

See Solution

Problem 22774

13(x+y)+23(x+y) -\frac{1}{3}(x+y) + \frac{2}{3}(x+y)

See Solution

Problem 22775

13(x+y)+23(x+y) -\frac{1}{3}(x+y) + \frac{2}{3}(x+y)

See Solution

Problem 22776

How many moles are in 3.24×10223.24 \times 10^{22} molecules of F? 3.24×10223.24 \times 10^{22} molecules to moles

See Solution

Problem 22777

Directions: Use the "Bis 6 \longdiv { 3 4 5 }

See Solution

Problem 22778

81434=8\frac{1}{4} - \frac{3}{4} =

See Solution

Problem 22779

What is the value of the expression? 5.93+9.015.9 * 3+9.01

See Solution

Problem 22780

Given f(x,y)=3x5+2xy3+4y2f(x, y) = 3x^5 + 2xy^3 + 4y^2, find
fx(x,y)=f_x(x, y) =
fy(x,y)=f_y(x, y) =

See Solution

Problem 22781

4) 414+113=4 \frac{1}{4}+1 \frac{1}{3}= a) 5275 \frac{2}{7} b) 57125 \frac{7}{12} c) 5165 \frac{1}{6} d) 51125 \frac{1}{12}

See Solution

Problem 22782

Simplify the following expression. 40[3×15+2]40 - [3 \times \frac{1}{5} + 2] 1.4 37.25 37.7 37.4

See Solution

Problem 22783

Which partial quotients could be added to find 396÷12396 \div 12 ? A. 20 and 4 B. 20 and 8 C. 30 and 3 D. 30 and 8

See Solution

Problem 22784

\begin{tabular}{c|c} cos+cot1+sin\frac{\cos +\cot }{1+\sin } & cot\cot \end{tabular}

See Solution

Problem 22785

Measurement and Matter Interconverting compound SI units
Convert the following measurement. 2.2×102 kg m3=g cm32.2 \times 10^{2} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}=\frac{\mathrm{g}}{\mathrm{~cm}^{3}} \square ×10

See Solution

Problem 22786

(129i)+(326i)=(12-9 i)+(32-6 i)= \square Express your answer in the form (a+bi)(a+b i).

See Solution

Problem 22787

Simplify by using the order of operations. 14+7+59=-|-14+7|+|5-9|=

See Solution

Problem 22788

w313=467w=\begin{array}{l}w-3 \frac{1}{3}=4 \frac{6}{7} \\ w=\square\end{array}

See Solution

Problem 22789

Simplify the following expression. Enter your answer as an improper, proper or mixed number. 616= type your answer... 6-\frac{1}{6}=\text { type your answer... }

See Solution

Problem 22790

[效, Convert the temperature from degrees Fahrenheit to degrees Celsius, using the formula below. C=59×(F32)194F=C\begin{aligned} C & =\frac{5}{9} \times(F-32) \\ 194^{\circ} \mathrm{F} & =\square^{\circ} \mathrm{C} \end{aligned} Submit

See Solution

Problem 22791

6. Solve the logarithmic equation for xx. log9(x5)+log9(x+3)=1\log _{9}(x-5)+\log _{9}(x+3)=1

See Solution

Problem 22792

Find the average rate of change of g(x)=2x22xg(x)=-2 x^{2}-2 x from x=4x=-4 to x=1x=1. Simplify your answer as much as possible.

See Solution

Problem 22793

Which of the following is a solution to the inequality below? 75+2t7 \geq 5+2 t t=8t=8 t=1t=1 t=5t=5 t=2t=2

See Solution

Problem 22794

69.ee4dxxlnx69. \int_{e}^{e^4} \frac{dx}{x\sqrt{\ln{x}}}

See Solution

Problem 22795

formula below. C=59×(F32)185F=C\begin{aligned} C & =\frac{5}{9} \times(F-32) \\ 185^{\circ} \mathrm{F} & =\square^{\circ} \mathrm{C} \end{aligned} Submit

See Solution

Problem 22796

Find the solution of the equation 4(x8)=564(x-8)=56
What is the value of (x8)?(x-8) ? (x8)=(x-8)=

See Solution

Problem 22797

[a1012200010b]\begin{bmatrix} a & 1 & 0 & 1 \\ 2 & 2 & 0 & \\ 0 & 0 & 1 & 0 \\ b \end{bmatrix}
Perform Gaussian elimination on the above matrix to reduce it to row echelon form or reduced row echelon form.

See Solution

Problem 22798

1. If cos40=a\cos{40^\circ} = a, what is sin50\sin{50^\circ} in terms of aa?
(A) aa (B) 1a\frac{1}{a} (C) 90a90 - a (D) a2a\sqrt{2}

See Solution

Problem 22799

Write the augmented matrix of the given system of equations. x3y=3x - 3y = 3 8x+9y=18x + 9y = 1 The augmented matrix is []\begin{bmatrix} \Box & \Box \mid \Box \\ \Box & \Box \mid \Box \end{bmatrix}.

See Solution

Problem 22800

f(x)=x5+3x33xf(x) = -x^5 + 3x^3 - 3x

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord