Get Started for Free
Overview
Archive
Sign In
Math
Arithmetic
Fractions and Decimals
Measurement
Geometry
Word Problems
Algebra
Calculus
Statistics
Probability
Number Theory
Discrete Mathematics
Linear Algebra
Differential Equations
Trigonometry
Finance
Data
Graph
Diagram & Picture
Math Statement
Expression
Equation
Inequality
System
Matrix
Vector
Set
Function
Sequence
Series
Vector Space
Distribution
Solve
Simplify
Model
Prove
Analyze
Numbers & Operations
Data & Statistics
Discrete
Natural Numbers
Fractions
Decimals
Integers
Rationals
Percentages
Ratios & Proportions
Order of Operations
Linearity
Absolute Value
Quadratics
Rational
Exponents & Radicals
Polynomials
Exponentials
Logarithms
Matrices
Complex Numbers
Angles
Triangles
Circles
Congruence & Similarity
Pythagorean Theorem
Mensuration
Transformations
Coordinates
Data Collection & Representation
Measures of Central Tendency
Measures of Spread
Statistical Inference
Right Triangle
Non-Right Triangle
Unit Circle & Radians
Identities & Equations
Applications
Limits & Continuity
Derivatives
Integrals
Combinatorics
Word Problem
Sequences & Series
Archive
/
Math
Math Statement
Problem 16301
Given
k
=
2
n
k=2^{n}
k
=
2
n
, find
1
6
n
16^{n}
1
6
n
in terms of
k
k
k
and express
−
3
2
n
-32^{n}
−
3
2
n
and
6
4
−
n
64^{-n}
6
4
−
n
using
k
k
k
.
See Solution
Problem 16302
Find the integer
n
n
n
for these equations:
4
n
+
1
+
4
n
−
320
=
0
4^{n+1}+4^{n}-320=0
4
n
+
1
+
4
n
−
320
=
0
and
4
n
+
1
−
2
2
n
−
1
=
224
4^{n+1}-2^{2n-1}=224
4
n
+
1
−
2
2
n
−
1
=
224
.
See Solution
Problem 16303
Solve the inequality
−
26
+
13
x
+
2
>
2
−
13
x
-26 + 13x + 2 > 2 - 13x
−
26
+
13
x
+
2
>
2
−
13
x
. What is
x
x
x
? A.
x
<
2
x<2
x
<
2
B.
x
≥
−
1
x \geq -1
x
≥
−
1
C.
x
>
1
x>1
x
>
1
D.
x
<
−
2
x<-2
x
<
−
2
See Solution
Problem 16304
Express
8
1
2
x
81^{2 x}
8
1
2
x
and
2
7
3
y
27^{3 y}
2
7
3
y
as powers of 3, then find the ratio
x
:
y
x:y
x
:
y
if they are equal.
See Solution
Problem 16305
Given
2
x
=
16
2^{x}=16
2
x
=
16
and
2
y
=
64
2^{y}=64
2
y
=
64
, find: (a)
2
x
+
y
2^{x+y}
2
x
+
y
, (b)
2
x
−
y
2^{x-y}
2
x
−
y
, (c)
x
y
xy
x
y
.
See Solution
Problem 16306
Simplify
2
(
3
n
+
2
)
−
2
(
3
n
)
2(3^{n+2}) - 2(3^{n})
2
(
3
n
+
2
)
−
2
(
3
n
)
and then
2
(
3
n
+
2
)
−
2
(
3
n
)
6
×
3
n
−
1
\frac{2(3^{n+2}) - 2(3^{n})}{6 \times 3^{n-1}}
6
×
3
n
−
1
2
(
3
n
+
2
)
−
2
(
3
n
)
.
See Solution
Problem 16307
Convert
2
×
4
4
+
8
3
−
5
×
2
2
−
2
2 \times 4^{4}+8^{3}-5 \times 2^{2}-2
2
×
4
4
+
8
3
−
5
×
2
2
−
2
to binary.
See Solution
Problem 16308
Find the difference quotient
f
(
x
+
h
)
−
f
(
x
)
h
\frac{f(x+h)-f(x)}{h}
h
f
(
x
+
h
)
−
f
(
x
)
for
f
(
x
)
=
7
x
+
7
f(x)=7x+7
f
(
x
)
=
7
x
+
7
, where
h
≠
0
h \neq 0
h
=
0
. Simplify your answer.
See Solution
Problem 16309
Calculate the difference quotient for
f
(
x
)
=
x
2
+
5
f(x)=x^{2}+5
f
(
x
)
=
x
2
+
5
: find
f
(
x
+
h
)
−
f
(
x
)
h
\frac{f(x+h)-f(x)}{h}
h
f
(
x
+
h
)
−
f
(
x
)
and simplify, where
h
≠
0
h \neq 0
h
=
0
.
See Solution
Problem 16310
Find the difference quotient
f
(
x
+
h
)
−
f
(
x
)
h
\frac{f(x+h)-f(x)}{h}
h
f
(
x
+
h
)
−
f
(
x
)
for the function
f
(
x
)
=
x
2
−
7
x
+
2
f(x)=x^{2}-7x+2
f
(
x
)
=
x
2
−
7
x
+
2
, where
h
≠
0
h \neq 0
h
=
0
.
See Solution
Problem 16311
Find and simplify the difference quotient
f
(
x
+
h
)
−
f
(
x
)
h
\frac{f(x+h)-f(x)}{h}
h
f
(
x
+
h
)
−
f
(
x
)
for
f
(
x
)
=
4
x
f(x)=4x
f
(
x
)
=
4
x
, where
h
≠
0
h \neq 0
h
=
0
.
See Solution
Problem 16312
Find the limit:
lim
x
→
−
∞
x
6
−
3
x
4
2
x
2
−
2
x
+
1
\lim _{x \rightarrow-\infty} \frac{x^{6}-3 x^{4}}{2 x^{2}-2 x+1}
lim
x
→
−
∞
2
x
2
−
2
x
+
1
x
6
−
3
x
4
.
See Solution
Problem 16313
Find the difference quotient
f
(
x
+
h
)
−
f
(
x
)
h
\frac{f(x+h)-f(x)}{h}
h
f
(
x
+
h
)
−
f
(
x
)
for
f
(
x
)
=
3
x
x
+
3
f(x)=\frac{3x}{x+3}
f
(
x
)
=
x
+
3
3
x
, with
h
≠
0
h \neq 0
h
=
0
. Simplify your answer.
See Solution
Problem 16314
Find the difference quotient
f
(
x
+
h
)
−
f
(
x
)
h
\frac{f(x+h)-f(x)}{h}
h
f
(
x
+
h
)
−
f
(
x
)
for
f
(
x
)
=
10
x
2
f(x)=\frac{10}{x^{2}}
f
(
x
)
=
x
2
10
, where
h
≠
0
h \neq 0
h
=
0
. Simplify your answer.
See Solution
Problem 16315
Find the difference quotient
f
(
x
+
h
)
−
f
(
x
)
h
\frac{f(x+h)-f(x)}{h}
h
f
(
x
+
h
)
−
f
(
x
)
for
f
(
x
)
=
11
x
2
f(x)=\frac{11}{x^{2}}
f
(
x
)
=
x
2
11
, simplifying your answer.
See Solution
Problem 16316
Find the difference quotient
f
(
x
+
h
)
−
f
(
x
)
h
\frac{f(x+h)-f(x)}{h}
h
f
(
x
+
h
)
−
f
(
x
)
for
f
(
x
)
=
5
x
x
+
6
f(x)=\frac{5 x}{x+6}
f
(
x
)
=
x
+
6
5
x
, where
h
≠
0
h \neq 0
h
=
0
. Simplify your answer.
See Solution
Problem 16317
Find the difference quotient
f
(
x
+
h
)
−
f
(
x
)
h
\frac{f(x+h)-f(x)}{h}
h
f
(
x
+
h
)
−
f
(
x
)
for
f
(
x
)
=
3
x
x
+
3
f(x)=\frac{3x}{x+3}
f
(
x
)
=
x
+
3
3
x
,
h
≠
0
h \neq 0
h
=
0
. Simplify your answer.
See Solution
Problem 16318
Find and simplify the difference quotient
f
(
x
+
h
)
−
f
(
x
)
h
\frac{f(x+h)-f(x)}{h}
h
f
(
x
+
h
)
−
f
(
x
)
for
f
(
x
)
=
2
x
f(x)=\frac{2}{x}
f
(
x
)
=
x
2
, where
h
≠
0
h \neq 0
h
=
0
.
See Solution
Problem 16319
Find the difference quotient
f
(
x
+
h
)
−
f
(
x
)
h
\frac{f(x+h)-f(x)}{h}
h
f
(
x
+
h
)
−
f
(
x
)
for
f
(
x
)
=
9
x
2
f(x)=\frac{9}{x^{2}}
f
(
x
)
=
x
2
9
, simplifying where
h
≠
0
h \neq 0
h
=
0
.
See Solution
Problem 16320
Find the difference quotient
f
(
x
+
h
)
−
f
(
x
)
h
\frac{f(x+h)-f(x)}{h}
h
f
(
x
+
h
)
−
f
(
x
)
for
f
(
x
)
=
x
2
−
5
x
+
9
f(x)=x^{2}-5 x+9
f
(
x
)
=
x
2
−
5
x
+
9
, where
h
≠
0
h \neq 0
h
=
0
. Simplify your answer.
See Solution
Problem 16321
Determine if the quadratic function
f
(
x
)
=
3
x
2
+
12
x
−
7
f(x)=3 x^{2}+12 x-7
f
(
x
)
=
3
x
2
+
12
x
−
7
has a max or min value, then find that value.
See Solution
Problem 16322
Find the vertex coordinates of the parabola defined by
f
(
x
)
=
−
4
(
x
+
2
)
2
+
3
f(x)=-4(x+2)^{2}+3
f
(
x
)
=
−
4
(
x
+
2
)
2
+
3
. Provide as an ordered pair.
See Solution
Problem 16323
Determine if the quadratic function
f
(
x
)
=
3
x
2
+
18
x
−
9
f(x)=3x^{2}+18x-9
f
(
x
)
=
3
x
2
+
18
x
−
9
has a maximum or minimum value and find that value.
See Solution
Problem 16324
Identify if the function
f
(
x
)
=
−
3
x
2
+
6
x
f(x)=-3 x^{2}+6 x
f
(
x
)
=
−
3
x
2
+
6
x
has a max or min value, then find that value.
See Solution
Problem 16325
Solve the equation
∣
3
y
+
6
∣
=
13
|3y + 6| = 13
∣3
y
+
6∣
=
13
and select the solution set: A. List answers or B.
∅
\varnothing
∅
.
See Solution
Problem 16326
A rifle fires bullets with speed
v
=
(
−
5.35
×
1
0
7
)
t
2
+
(
2.30
×
1
0
5
)
t
v=(-5.35 \times 10^{7}) t^{2}+(2.30 \times 10^{5}) t
v
=
(
−
5.35
×
1
0
7
)
t
2
+
(
2.30
×
1
0
5
)
t
. Find acceleration, position, time, speed, and barrel length.
See Solution
Problem 16327
Solve for
x
x
x
and
y
y
y
in the equations:
y
−
2
x
=
2
y - 2x = 2
y
−
2
x
=
2
and
x
2
=
y
−
2
x
+
3
x^2 = y - 2x + 3
x
2
=
y
−
2
x
+
3
.
See Solution
Problem 16328
Solve the equation
4
(
x
−
2
)
=
3
x
+
1
4(x-2)=3x+1
4
(
x
−
2
)
=
3
x
+
1
.
See Solution
Problem 16329
Graph the function
f
(
x
)
=
(
x
−
1
)
2
+
7
f(x)=(x-1)^{2}+7
f
(
x
)
=
(
x
−
1
)
2
+
7
using its vertex and
y
y
y
-intercept to find the range.
See Solution
Problem 16330
Calculate
93
×
65
93 \times 65
93
×
65
.
See Solution
Problem 16331
Solve for
x
x
x
in the equation:
3
x
+
1
=
7
x
−
11
3 x + 1 = 7 x - 11
3
x
+
1
=
7
x
−
11
.
See Solution
Problem 16332
Solve the equation
26
+
1
=
76
−
11
26 + 1 = 76 - 11
26
+
1
=
76
−
11
. What is the value of the left side?
See Solution
Problem 16333
Solve the equation:
2
(
2
x
+
7
)
=
11
x
2(2 x+7)=11 x
2
(
2
x
+
7
)
=
11
x
.
See Solution
Problem 16334
Solve
x
+
7
5
=
15
\frac{x+7}{5}=15
5
x
+
7
=
15
by stating the order of two operations. Then, find
x
x
x
. What is
x
=
□
x=\square
x
=
□
?
See Solution
Problem 16335
For the function
f
(
x
)
=
x
2
−
4
x
f(x)=x^{2}-4 x
f
(
x
)
=
x
2
−
4
x
, find the x-intercepts, y-intercept, and graph it.
See Solution
Problem 16336
What does
lim
x
→
3
f
(
x
)
=
5
\lim _{x \rightarrow 3} f(x)=5
lim
x
→
3
f
(
x
)
=
5
mean? Choose the correct interpretation: (A), (B), (C), or (D).
See Solution
Problem 16337
Find
lim
x
→
2
+
f
(
x
)
\lim _{x \rightarrow 2^{+}} f(x)
lim
x
→
2
+
f
(
x
)
for the piecewise function:
f
(
x
)
=
{
5
x
−
3
if
x
<
2
,
9
if
x
=
2
,
4
x
+
3
if
x
>
2
}
f(x)=\{5x-3 \text{ if } x<2, 9 \text{ if } x=2, 4x+3 \text{ if } x>2\}
f
(
x
)
=
{
5
x
−
3
if
x
<
2
,
9
if
x
=
2
,
4
x
+
3
if
x
>
2
}
.
See Solution
Problem 16338
Solve the inequality
7
x
+
6
≤
−
22
7x + 6 \leq -22
7
x
+
6
≤
−
22
. Provide the solution in interval notation and graph it.
See Solution
Problem 16339
Find
lim
x
→
−
3
x
2
−
9
x
2
−
2
x
−
15
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}-2 x-15}
lim
x
→
−
3
x
2
−
2
x
−
15
x
2
−
9
. Options: (A) 0 (B)
3
5
\frac{3}{5}
5
3
(C)
3
4
\frac{3}{4}
4
3
(D) 1 (E) nonexistent.
See Solution
Problem 16340
Find
lim
x
→
0
tan
(
2
x
)
6
x
sec
(
3
x
)
\lim _{x \rightarrow 0} \frac{\tan (2 x)}{6 x \sec (3 x)}
lim
x
→
0
6
x
s
e
c
(
3
x
)
t
a
n
(
2
x
)
. Choose from (A) 0, (B)
1
6
\frac{1}{6}
6
1
, (C)
1
3
\frac{1}{3}
3
1
, (D) nonexistent.
See Solution
Problem 16341
Find
lim
x
→
2
f
(
x
)
\lim _{x \rightarrow 2} f(x)
lim
x
→
2
f
(
x
)
for the function
f
(
x
)
=
x
2
−
4
x
2
+
x
−
6
f(x)=\frac{x^{2}-4}{x^{2}+x-6}
f
(
x
)
=
x
2
+
x
−
6
x
2
−
4
. Choices: (A) 0, (B)
2
3
\frac{2}{3}
3
2
, (C)
4
5
\frac{4}{5}
5
4
, (D) nonexistent.
See Solution
Problem 16342
Find the value of
k
k
k
such that
lim
x
→
2
f
(
x
)
=
3
\lim _{x \rightarrow 2} f(x)=3
lim
x
→
2
f
(
x
)
=
3
for
f
(
x
)
=
(
x
−
2
)
(
x
2
−
k
2
)
(
x
2
−
4
)
(
x
−
k
)
f(x)=\frac{(x-2)(x^{2}-k^{2})}{(x^{2}-4)(x-k)}
f
(
x
)
=
(
x
2
−
4
)
(
x
−
k
)
(
x
−
2
)
(
x
2
−
k
2
)
.
See Solution
Problem 16343
Find
lim
x
→
π
4
g
(
x
)
\lim _{x \rightarrow \frac{\pi}{4}} g(x)
lim
x
→
4
π
g
(
x
)
for
g
(
x
)
=
cos
x
−
sin
x
1
−
2
sin
2
x
g(x)=\frac{\cos x-\sin x}{1-2 \sin ^{2} x}
g
(
x
)
=
1
−
2
s
i
n
2
x
c
o
s
x
−
s
i
n
x
. Options: (A) 0 (B)
1
2
\frac{1}{\sqrt{2}}
2
1
(C)
2
\sqrt{2}
2
(D) Limit does not exist.
See Solution
Problem 16344
Find
lim
x
→
1
f
(
x
)
\lim _{x \rightarrow 1} f(x)
lim
x
→
1
f
(
x
)
for
f
(
x
)
=
x
2
−
1
x
−
1
f(x)=\frac{x^{2}-1}{\sqrt{x}-1}
f
(
x
)
=
x
−
1
x
2
−
1
. Choices: (A) 4, (B) 2, (C) 0, (D) nonexistent.
See Solution
Problem 16345
Solve the equation:
9
x
−
3
=
3
(
2
x
+
5
)
9x - 3 = 3(2x + 5)
9
x
−
3
=
3
(
2
x
+
5
)
.
See Solution
Problem 16346
Calculate the product:
P
=
−
3
5
⋅
2
−
7
⋅
−
5
8
⋅
3
−
10
P = \frac{-3}{5} \cdot \frac{2}{-7} \cdot \frac{-5}{8} \cdot \frac{3}{-10}
P
=
5
−
3
⋅
−
7
2
⋅
8
−
5
⋅
−
10
3
.
See Solution
Problem 16347
Find the value of
x
x
x
in the equation
2
+
279
=
x
2 + 279 = x
2
+
279
=
x
.
See Solution
Problem 16348
Solve the inequality
n
−
2
(
n
−
24
)
≤
7
n
n - 2(n - 24) \leq 7n
n
−
2
(
n
−
24
)
≤
7
n
and provide the solution set in interval notation and graph form.
See Solution
Problem 16349
Which function has a horizontal asymptote at 4? A.
f
(
x
)
=
2
(
3
)
x
+
4
f(x)=2(3)^{x}+4
f
(
x
)
=
2
(
3
)
x
+
4
B.
f
(
x
)
=
2
x
−
4
f(x)=2 x-4
f
(
x
)
=
2
x
−
4
C.
f
(
x
)
=
3
(
2
)
x
−
4
f(x)=3(2)^{x}-4
f
(
x
)
=
3
(
2
)
x
−
4
D.
f
(
x
)
=
−
3
x
+
4
f(x)=-3 x+4
f
(
x
)
=
−
3
x
+
4
See Solution
Problem 16350
Solve the inequality
−
9
≤
x
+
8
≤
18
-9 \leq x+8 \leq 18
−
9
≤
x
+
8
≤
18
and provide the solution set in interval and graph forms.
See Solution
Problem 16351
Which function has a horizontal asymptote at 4? A.
f
(
x
)
=
2
(
3
)
x
+
4
f(x)=2(3)^{x}+4
f
(
x
)
=
2
(
3
)
x
+
4
B.
f
(
x
)
=
2
x
−
4
f(x)=2 x-4
f
(
x
)
=
2
x
−
4
C.
f
(
x
)
=
3
(
2
)
x
−
4
f(x)=3(2)^{x}-4
f
(
x
)
=
3
(
2
)
x
−
4
D.
f
(
x
)
=
−
3
x
+
4
f(x)=-3 x+4
f
(
x
)
=
−
3
x
+
4
See Solution
Problem 16352
Complete the table for the function
y
=
−
2
3
x
+
7
y=-\frac{2}{3} x+7
y
=
−
3
2
x
+
7
with domain
{
−
12
,
−
6
,
3
,
15
}
\{-12,-6,3,15\}
{
−
12
,
−
6
,
3
,
15
}
.
See Solution
Problem 16353
Solve the inequality
−
16
≤
3
x
−
5
≤
1
-16 \leq 3x - 5 \leq 1
−
16
≤
3
x
−
5
≤
1
and express the solution set in interval and graph forms.
See Solution
Problem 16354
Solve the inequality
−
4
≤
−
2
x
+
2
<
14
-4 \leq -2x + 2 < 14
−
4
≤
−
2
x
+
2
<
14
and express the solution in interval and graph form.
See Solution
Problem 16355
Solve the inequality:
6
(
1
2
y
+
4
)
<
6
(
1
2
y
−
5
)
6\left(\frac{1}{2} y+4\right)<6\left(\frac{1}{2} y-5\right)
6
(
2
1
y
+
4
)
<
6
(
2
1
y
−
5
)
. What is the solution set in interval notation?
See Solution
Problem 16356
Which set does the number
23
\sqrt{23}
23
belong to: irrational, integers, rational, or whole numbers?
See Solution
Problem 16357
Calculate
(
−
13
)
+
(
−
7
)
[
(
−
2
)
(
−
3
)
]
−
[
(
−
7
)
(
−
3
)
]
(
−
2
)
(-13)+(-7)[(-2)(-3)]-[(-7)(-3)](-2)
(
−
13
)
+
(
−
7
)
[(
−
2
)
(
−
3
)]
−
[(
−
7
)
(
−
3
)]
(
−
2
)
.
See Solution
Problem 16358
Calculate
6
⋅
(
−
7
)
⋅
[
(
−
2
)
⋅
(
−
3
)
]
−
[
−
(
−
7
)
⋅
(
−
3
)
]
⋅
(
−
2
)
6 \cdot(-7)\cdot[(-2)\cdot(-3)]-[-(-7)\cdot(-3)]\cdot(-2)
6
⋅
(
−
7
)
⋅
[(
−
2
)
⋅
(
−
3
)]
−
[
−
(
−
7
)
⋅
(
−
3
)]
⋅
(
−
2
)
.
See Solution
Problem 16359
Compare
11
\sqrt{11}
11
and 3.7 using
<
,
>
<, >
<
,
>
, or
=
=
=
.
See Solution
Problem 16360
Simplify the expression:
(
9
x
2
+
9
−
3
x
)
−
(
4
−
6
x
+
8
x
2
)
(9 x^{2}+9-3 x)-(4-6 x+8 x^{2})
(
9
x
2
+
9
−
3
x
)
−
(
4
−
6
x
+
8
x
2
)
.
See Solution
Problem 16361
Solve the inequality
∣
3
x
−
6
∣
≥
21
|3x - 6| \geq 21
∣3
x
−
6∣
≥
21
. What are the solution intervals for
x
x
x
?
See Solution
Problem 16362
Solve the equation
C
=
π
d
C=\pi d
C
=
π
d
for
d
d
d
. What is
d
d
d
in terms of
C
C
C
?
See Solution
Problem 16363
Solve for
x
x
x
:
0.72
x
−
0.93
=
9.39
−
3.58
x
0.72 x - 0.93 = 9.39 - 3.58 x
0.72
x
−
0.93
=
9.39
−
3.58
x
See Solution
Problem 16364
Solve
1
3
∣
3
x
+
9
∣
−
5
=
4
\frac{1}{3}|3 x+9|-5=4
3
1
∣3
x
+
9∣
−
5
=
4
. What are the possible values of
x
x
x
?
See Solution
Problem 16365
Calculate
18
−
0
18 - 0
18
−
0
. What is the result?
See Solution
Problem 16366
Calculate the value of
2.75
+
2
−
2
+
75
2.75+\sqrt{2}-\sqrt{2}+75
2.75
+
2
−
2
+
75
.
See Solution
Problem 16367
Find the intersection of sets A and C, where A = {b, d, e, g, j, k} and C = {b, d, e, h, i}.
See Solution
Problem 16368
Calculate:
5
⋅
(
−
13
)
+
45
−
(
−
45
)
+
13
5 \cdot(-13) + 45 - (-45) + 13
5
⋅
(
−
13
)
+
45
−
(
−
45
)
+
13
See Solution
Problem 16369
Solve the equation:
7
⋅
−
3
5
+
−
3
5
=
0
7 \cdot \frac{-3}{5} + \frac{-3}{5} = 0
7
⋅
5
−
3
+
5
−
3
=
0
.
See Solution
Problem 16370
Determine the other trigonometric functions for
θ
\theta
θ
given that
tan
θ
=
−
1
6
\tan \theta=-\frac{1}{6}
tan
θ
=
−
6
1
and
sin
θ
>
0
\sin \theta>0
sin
θ
>
0
.
See Solution
Problem 16371
Find the exact value of
tan
(
−
π
3
)
\tan \left(-\frac{\pi}{3}\right)
tan
(
−
3
π
)
using reference angles.
See Solution
Problem 16372
Find the exact value of
cos
(
−
π
3
)
\cos \left(-\frac{\pi}{3}\right)
cos
(
−
3
π
)
using reference angles.
See Solution
Problem 16373
Find the derivative of
y
=
1
x
y=\frac{1}{x}
y
=
x
1
, calculate
lim
x
→
∞
−
4
x
7
x
−
3
\lim_{x \to \infty} \frac{-4x}{7x-3}
lim
x
→
∞
7
x
−
3
−
4
x
, and find two numbers with a difference of 4 that minimize their product.
See Solution
Problem 16374
Solve for
h
h
h
in the equation
A
=
1
2
(
B
+
b
)
h
A=\frac{1}{2}(B+b) h
A
=
2
1
(
B
+
b
)
h
.
See Solution
Problem 16375
Solve the equation
5
x
2
−
x
−
7
=
0
5 x^{2}-x-7=0
5
x
2
−
x
−
7
=
0
. It cannot be factored.
See Solution
Problem 16376
Express the complex number in standard form
a
+
b
i
a+bi
a
+
bi
:
(
3
∣
15
0
∘
)
(
2
∣
3
0
∘
)
(
0.5
∣
1
0
∘
)
\frac{\left(3 \mid 150^{\circ}\right)}{\left(2 \mid 30^{\circ}\right)\left(0.5 \mid 10^{\circ}\right)}
(
2
∣
3
0
∘
)
(
0.5
∣
1
0
∘
)
(
3
∣
15
0
∘
)
See Solution
Problem 16377
Find the intersection of sets A and B using
U
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
}
U=\{1,2,3,4,5,6,7,8,9,10\}
U
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
}
,
A
=
{
2
,
4
,
5
}
A=\{2,4,5\}
A
=
{
2
,
4
,
5
}
,
B
=
{
5
,
6
,
8
,
9
}
B=\{5,6,8,9\}
B
=
{
5
,
6
,
8
,
9
}
.
See Solution
Problem 16378
Balance the equation:
C
a
3
(
P
O
4
)
2
(
s
)
+
S
i
O
2
(
s
)
+
C
(
s
)
→
C
a
S
i
O
3
(
s
)
+
P
4
(
s
)
+
C
O
(
g
)
\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)+\mathrm{SiO}_{2}(s)+\mathrm{C}(s) \rightarrow \mathrm{CaSiO}_{3}(s)+\mathrm{P}_{4}(s)+\mathrm{CO}(g)
Ca
3
(
PO
4
)
2
(
s
)
+
SiO
2
(
s
)
+
C
(
s
)
→
CaSiO
3
(
s
)
+
P
4
(
s
)
+
CO
(
g
)
using smallest whole number coefficients.
See Solution
Problem 16379
Balance the equation:
C
a
3
(
P
O
4
)
2
(
s
)
+
S
i
O
2
(
s
)
+
C
(
s
)
→
3
C
a
S
i
O
3
(
s
)
+
P
4
(
s
)
+
C
O
(
g
)
\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)+\mathrm{SiO}_{2}(s)+\mathrm{C}(s) \rightarrow 3 \mathrm{CaSiO}_{3}(s)+\mathrm{P}_{4}(s)+\mathrm{CO}(g)
Ca
3
(
PO
4
)
2
(
s
)
+
SiO
2
(
s
)
+
C
(
s
)
→
3
CaSiO
3
(
s
)
+
P
4
(
s
)
+
CO
(
g
)
See Solution
Problem 16380
Find the set
(
A
∪
B
)
∩
C
(A \cup B) \cap C
(
A
∪
B
)
∩
C
using
U
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
}
,
A
=
{
1
,
2
,
4
}
,
B
=
{
4
,
6
,
8
,
9
}
,
C
=
{
2
,
4
,
6
}
U=\{1,2,3,4,5,6,7,8,9,10\}, A=\{1,2,4\}, B=\{4,6,8,9\}, C=\{2,4,6\}
U
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
}
,
A
=
{
1
,
2
,
4
}
,
B
=
{
4
,
6
,
8
,
9
}
,
C
=
{
2
,
4
,
6
}
.
See Solution
Problem 16381
Solve
(
x
+
2
)
2
=
49
(x+2)^{2}=49
(
x
+
2
)
2
=
49
. Hint: 49 is a perfect square.
See Solution
Problem 16382
Solve
x
2
+
4
x
=
−
1
x^{2}+4 x=-1
x
2
+
4
x
=
−
1
. Hint: Add 4 to both sides to form a perfect square.
See Solution
Problem 16383
Find the set
(
A
∩
B
)
∪
C
(A \cap B) \cup C
(
A
∩
B
)
∪
C
using
U
=
{
16
,
17
,
18
,
19
,
20
,
21
,
22
,
23
,
24
,
25
}
U=\{16,17,18,19,20,21,22,23,24,25\}
U
=
{
16
,
17
,
18
,
19
,
20
,
21
,
22
,
23
,
24
,
25
}
,
A
=
{
17
,
19
,
20
,
21
,
25
}
A=\{17,19,20,21,25\}
A
=
{
17
,
19
,
20
,
21
,
25
}
,
B
=
{
18
,
20
,
22
,
23
,
24
}
B=\{18,20,22,23,24\}
B
=
{
18
,
20
,
22
,
23
,
24
}
, and
C
=
{
17
,
19
,
20
,
22
}
C=\{17,19,20,22\}
C
=
{
17
,
19
,
20
,
22
}
.
See Solution
Problem 16384
Solve the equation:
9
y
+
5
=
9
(
y
+
5
)
−
46
9y + 5 = 9(y + 5) - 46
9
y
+
5
=
9
(
y
+
5
)
−
46
.
See Solution
Problem 16385
Find the average rate of change of
f
(
x
)
=
sin
x
f(x)=\sin x
f
(
x
)
=
sin
x
from
x
1
=
π
4
x_{1}=\frac{\pi}{4}
x
1
=
4
π
to
x
2
=
3
π
2
x_{2}=\frac{3\pi}{2}
x
2
=
2
3
π
.
See Solution
Problem 16386
Find the ordered pair
(
x
,
y
)
(x, y)
(
x
,
y
)
that satisfies the equation
5
x
+
y
=
8
5x + y = 8
5
x
+
y
=
8
.
See Solution
Problem 16387
Solve the equation
∣
7
y
−
8
∣
=
∣
6
y
+
4
∣
|7y - 8| = |6y + 4|
∣7
y
−
8∣
=
∣6
y
+
4∣
and express your answer as a reduced fraction if necessary.
See Solution
Problem 16388
Find the limit of
f
(
x
+
h
)
−
f
(
x
)
h
\frac{f(x+h)-f(x)}{h}
h
f
(
x
+
h
)
−
f
(
x
)
for
f
(
x
)
=
x
2
+
1
f(x)=x^{2}+1
f
(
x
)
=
x
2
+
1
as
h
≠
0
h \neq 0
h
=
0
.
See Solution
Problem 16389
Identify which numbers in the set
A
=
{
−
6
,
1
7
,
−
8.333
…
,
3
π
,
2
,
8
}
A=\{-6, \frac{1}{7}, -8.333\ldots, 3\pi, 2, 8\}
A
=
{
−
6
,
7
1
,
−
8.333
…
,
3
π
,
2
,
8
}
are natural, integer, rational, irrational, and real numbers.
See Solution
Problem 16390
Find
b
b
b
and
Y
Z
Y Z
Y
Z
given
X
Y
=
6
b
X Y=6b
X
Y
=
6
b
,
Y
Z
=
8
b
Y Z=8b
Y
Z
=
8
b
, and
X
Z
=
154
X Z=154
XZ
=
154
with
Y
Y
Y
between
X
X
X
and
Z
Z
Z
.
See Solution
Problem 16391
Find
Y
Y
Y
and
Y
Z
Y Z
Y
Z
given
X
Y
=
11
X Y=11
X
Y
=
11
,
Y
Z
=
4
c
Y Z=4c
Y
Z
=
4
c
, and
X
Z
=
83
X Z=83
XZ
=
83
.
See Solution
Problem 16392
Solve the absolute value equation:
∣
−
4
y
+
6
∣
+
6
=
1
|-4y + 6| + 6 = 1
∣
−
4
y
+
6∣
+
6
=
1
. Provide the answer as a reduced fraction if necessary.
See Solution
Problem 16393
Identify the types of numbers in the set
C
=
{
0
,
1
,
1
9
,
1
12
,
1
15
}
C=\{0,1, \frac{1}{9}, \frac{1}{12}, \frac{1}{15}\}
C
=
{
0
,
1
,
9
1
,
12
1
,
15
1
}
.
See Solution
Problem 16394
Identify which numbers in the set
E
=
{
14
,
π
,
14
+
1
,
π
+
1
14
}
E=\{\sqrt{14}, \pi, \sqrt{14}+1, \pi+\frac{1}{14}\}
E
=
{
14
,
π
,
14
+
1
,
π
+
14
1
}
are (a) Natural, (b) Integers, (c) Rational, (d) Irrational, (e) Real.
See Solution
Problem 16395
Solve the linear equation:
6
z
−
4
4
+
13
8
=
12
z
+
1
8
\frac{6 z-4}{4}+\frac{13}{8}=\frac{12 z+1}{8}
4
6
z
−
4
+
8
13
=
8
12
z
+
1
.
See Solution
Problem 16396
Solve for
x
x
x
in the equation
x
2
−
14
x
+
49
=
0
x^{2}-14 x+49=0
x
2
−
14
x
+
49
=
0
.
See Solution
Problem 16397
Differentiate the following using the Product Rule:
1.
y
=
x
2
(
x
+
1
)
y=x^{2}(x+1)
y
=
x
2
(
x
+
1
)
2.
y
=
(
x
2
+
3
)
(
x
+
6
)
y=(x^{2}+3)(x+6)
y
=
(
x
2
+
3
)
(
x
+
6
)
3.
y
=
x
(
x
3
+
6
)
y=\sqrt{x}(x^{3}+6)
y
=
x
(
x
3
+
6
)
4.
y
=
(
2
x
2
+
4
x
−
3
)
(
3
x
+
4
)
y=(2 x^{2}+4 x-3)(3 x+4)
y
=
(
2
x
2
+
4
x
−
3
)
(
3
x
+
4
)
See Solution
Problem 16398
Bestimmen Sie die Hochpunkt-Koordinaten der Funktion
f
(
x
)
=
x
4
−
4
3
x
3
−
4
x
2
f(x)=x^{4}-\frac{4}{3} x^{3}-4 x^{2}
f
(
x
)
=
x
4
−
3
4
x
3
−
4
x
2
.
See Solution
Problem 16399
Find
f
[
g
(
x
)
]
f[g(x)]
f
[
g
(
x
)]
and
g
[
f
(
x
)
]
g[f(x)]
g
[
f
(
x
)]
for
f
(
x
)
=
4
x
+
3
f(x)=\frac{4}{x+3}
f
(
x
)
=
x
+
3
4
and
g
(
x
)
=
x
2
−
3
g(x)=x^{2}-3
g
(
x
)
=
x
2
−
3
.
See Solution
Problem 16400
Solve the linear equation:
6
x
+
5
=
6
(
x
+
2
)
−
7
6x + 5 = 6(x + 2) - 7
6
x
+
5
=
6
(
x
+
2
)
−
7
.
See Solution
<
1
...
161
162
163
164
165
166
167
...
270
>
Start learning now
Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.
Download on the
App Store
Get it on
Google Play
Parents
Influencer program
Contact
Policy
Terms