Math / AlgebraQuestionFind f[g(x)]f[g(x)]f[g(x)] and g[f(x)]g[f(x)]g[f(x)] for f(x)=4x+3f(x)=\frac{4}{x+3}f(x)=x+34 and g(x)=x2−3g(x)=x^{2}-3g(x)=x2−3.Studdy Solutionimplify the expression.g[f(x)]=16(x+3)2−3g[f(x)] = \frac{16}{(x+3)^{2}}-3g[f(x)]=(x+3)216−3So, f[g(x)]=4x2f[g(x)] = \frac{4}{x^{2}}f[g(x)]=x24 and g[f(x)]=16(x+3)2−3g[f(x)] = \frac{16}{(x+3)^{2}}-3g[f(x)]=(x+3)216−3. View Full Solution - FreeWas this helpful?