Math Statement

Problem 15301

b) [6 pts] Let f be a continuous function such that: arccos(x8)arctan(x4)+x2=0xf(t)dt.\arccos \left(\sqrt{\frac{x}{8}}\right) \arctan \left(\frac{x}{4}\right)+x^{2}=\int_{0}^{\sqrt{x}} f(t) d t .
Find f(2)f(2).

See Solution

Problem 15302

Submit Answer
6. [-/1 Points]

DETAILS MY NOTES SCALCET9 4.9.021.
Find the most general antiderivative of the function. (Check your answer by differentiation. Use CC for the constant of the antiderivative.) f(θ)=4sin(θ)9sec(θ)tan(θ)f(\theta)=4 \sin (\theta)-9 \sec (\theta) \tan (\theta) \quad on the interval (π2,π2)\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) F(θ)=F(\theta)= \square
Need Help? Read it \square Submit Answer

See Solution

Problem 15303

Write the product as a sum: 20cos(25r)sin(21r)=20 \cos (25 r) \sin (21 r)=
Question Help: Video Message instructror

See Solution

Problem 15304

Solve for yy. 2(3y7)=162(3 y-7)=16
Simplify your answer as much as possible.

See Solution

Problem 15305

Given the functions ff and gg below, find f(g(1))f(g(-1)). f(x)=x2+6x+3g(x)=2x+3\begin{array}{l} f(x)=-x^{2}+6 x+3 \\ g(x)=2 x+3 \end{array}
Provide your answer below: f(g(1))=f(g(-1))=

See Solution

Problem 15306

Add. 13+59-\frac{1}{3}+\frac{5}{9}
Write your answer in simplest form.

See Solution

Problem 15307

xexdx\int x e^{-x} d x

See Solution

Problem 15308

A square matrix AA is idempotent if A2=AA^{2}=A. Let VV be the vector space of all 2×22 \times 2 matrices with real entries. Let HH be the set of all 2×22 \times 2 idempotent matrices with real entries. Is HH a subspace of the vector space VV ?
1. Does HH contain the zero vector of VV ? choose
2. Is HH closed under addition? If it is, enter CLOSED. If it is not, enter two matrices in HH whose sum is not in HH, using a comma separated list and syntax such as [[1,2],[3,4]],[[5,6],[7,8]][[1,2],[3,4]],[[5,6],[7,8]] for the answer [1234],[5678]\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right],\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right]. (Hint: to show that HH is not closed under addition, it is sufficient to find two idempotent matrices AA and BB such that (A+B)2(A+B)(A+B)^{2} \neq(A+B).) \square
3. Is HH closed under scalar multiplication? If it is, enter CLOSED. If it is not, enter a scalar in R\mathbb{R} and a matrix in HH whose product is not in HH, using a comma separated list and syntax such as 2,[[3,4],[5,6]]2,[[3,4],[5,6]] for the answer 2,[3456]2,\left[\begin{array}{ll}3 & 4 \\ 5 & 6\end{array}\right]. (Hint: to show that HH is not closed under scalar multiplication, it is sufficient to find a real number rr and an idempotent matrix AA such that (rA)2(rA)(r A)^{2} \neq(r A).) \square
4. Is HH a subspace of the vector space VV ? You should be able to justify your answer by writing a complete, coherent, and detailed proof based on your answers to parts 1-3. choose

See Solution

Problem 15309

Si u=[3,4]\vec{u}=[3,4] et v=[6,k]\vec{v}=[6, k], quelle est la valeur de kk si les deux vecteurs sont orthogonaux.

See Solution

Problem 15310

1x2y2dxdy=,x2+y21\iint \sqrt{1-x^{2}-y^{2}} d x d y=\quad, x^{2}+y^{2} \leq 1

See Solution

Problem 15311

Find the real zeros of f . Use the real zeros to factor f . f(x)=x4+10x320x290x+99f(x)=x^{4}+10 x^{3}-20 x^{2}-90 x+99

See Solution

Problem 15312

Question 6 (1 point) Saved
Determine the phase shift of the sinusoidal function y=5sin(3x3π2)5y=-5 \sin \left(3 x-\frac{3 \pi}{2}\right)-5 3π2rad\frac{3 \pi}{2} \mathrm{rad} π2rad\frac{\pi}{2} \mathrm{rad} 0.5 rad to the right 0.5 rad to the left
Question 7 (1 point) \checkmark Saved
An equivalent trigonometric expression for sin(π2x)\sin \left(\frac{\pi}{2}-x\right) is sinx\sin x tanx\tan x cosx\cos x none of the above
Question 8 (1 point) \checkmark Saved
An equivalent trigonometric expression for cos(x)\cos (-x) is sinx\sin x sinx-\sin x cosx\cos x

See Solution

Problem 15313

36632(36384)=\frac{36}{6} \cdot 32(36 \cdot 384)=

See Solution

Problem 15314

Let P2\mathcal{P}_{2} be the vector space of all polynomials of degree 2 or less, and let HH be the subspace spanned by (2x+1),x22x3-(2 x+1), x^{2}-2 x-3 and 6x4x2+116 x-4 x^{2}+11 a. The dimension of the subspace HH is \square b. Is {(2x+1),x22x3,6x4x2+11}\left\{-(2 x+1), x^{2}-2 x-3,6 x-4 x^{2}+11\right\} a basis for P2\mathcal{P}_{2} ? choose \square Be sure you can explain and justify your answer. c. A basis for the subspace HH is \{ \square \}. Enter a polynomial or a comma separated list of polynomials.

See Solution

Problem 15315

Find a basis for the column space of A=[420144314201]A=\left[\begin{array}{cccc} 4 & 2 & 0 & -1 \\ -4 & -4 & -3 & 1 \\ 4 & 2 & 0 & -1 \end{array}\right]

See Solution

Problem 15316

True or False \quad NO 10 x=0x=0y=sin1xy=\sin \frac{1}{x} 的振荡间 断点()  2. x=π/2 为 y=tanx 的无穷间断 \text { 2. } x=\pi / 2 \text { 为 } y=\tan x \text { 的无穷间断 }

See Solution

Problem 15317

Find the complex zeros of the following polynomial function. Write ff in factored form. f(x)=2x413x316x2+243x116f(x)=2 x^{4}-13 x^{3}-16 x^{2}+243 x-116
The complex zeros of f are 12,4,5+2i,52i\frac{1}{2},-4,5+2 i, 5-2 i. (Simplify your answer. Type an exact answer, using radicals and ii as needed. Use integers or fractions for any nu separate answers as needed.)
Use the complex zeros to factor f. f(x)=f(x)= \square

See Solution

Problem 15318

To find the null space of the matrix
[1721403012361104]\begin{bmatrix} 1 & 7 & -2 & 14 & 0 \\ 3 & 0 & 1 & -2 & 3 \\ 6 & 1 & -1 & 0 & 4 \end{bmatrix}
and express it as span{A,B}\operatorname{span}\{A, B\}, where AA and BB are vectors that form a basis for the null space.

See Solution

Problem 15319

Work out the value of aa in the equation below. x214x+49=(xa)2x^{2}-14 x+49=(x-a)^{2}

See Solution

Problem 15320

Find the complex zeros of the following polynomial function. Write ff in factored form. f(x)=7x4x321x2+367x52f(x)=7 x^{4}-x^{3}-21 x^{2}+367 x-52

See Solution

Problem 15321

Fill in the gaps to factorise this expression. m264=(m+)(m)m^{2}-64=(m+\ldots)(m-\ldots)

See Solution

Problem 15322

Evaluate the following. 4×4614÷24 \times 4-6-14 \div 2

See Solution

Problem 15323

Fill in the gaps to factorise this expression. x2+6x27=(x(x+)x^{2}+6 x-27=(x-\not)(x+\ldots)

See Solution

Problem 15324

Evaluate (84)÷2(8-4) \div 2.

See Solution

Problem 15325

Expand and simplify (2a+3)(4a+5)(2 a+3)(4 a+5)

See Solution

Problem 15326

Graph the inequality. yx6y \geq x-6
Use the graphing tool on the right to graph the inequality. \square Click to enlaftge graph

See Solution

Problem 15327

Factorise m2+12m+32m^{2}+12 m+32 fully

See Solution

Problem 15328

10sinθ+cosθcotanθ=cosecθ10-\sin \theta+\cos \theta \cot a n \theta=\operatorname{cosec} \theta

See Solution

Problem 15329

1. Simplify the fraction 1232\frac{12}{32}.

See Solution

Problem 15330

Identify the graph for the inequalities x8>0\frac{x}{8}>0 or 4x32-4 x \geq 32.

See Solution

Problem 15331

Calculate the value of 13064\frac{130}{64}.

See Solution

Problem 15332

Calculate the value of 2242 \frac{2}{4}.

See Solution

Problem 15333

Solve for nn in the equation: 18=4n+53-18=-4 n+5-3.

See Solution

Problem 15334

Solve for nn: 18=4n+53-18=-4 n+5-3

See Solution

Problem 15335

Solve for kk in the equation: 395k=7(35k)-39 - 5k = 7(3 - 5k).

See Solution

Problem 15336

Find the inverse of the function R(x)=2x+1R(x)=2x+1, which is R1(x)=x12R^{-1}(x)=\frac{x-1}{2}.

See Solution

Problem 15337

Calculate 801÷911801 \div 9 - 11.

See Solution

Problem 15338

Calculate 42×178+342 \times 178 + 3.

See Solution

Problem 15339

Calculate the value of (52+122)12\left(5^{2}+12^{2}\right)^{\frac{1}{2}}.

See Solution

Problem 15340

Solve for mm in the equation: 7(6+4m)=8m+38-7(6+4 m)=-8 m+38.

See Solution

Problem 15341

Find the inverse of the function Q(x)=2x74Q(x)=\frac{2 x-7}{4}. Show all work.

See Solution

Problem 15342

Find the equation for the function shaped like f(x)=x2f(x)=x^{2}, shifted 3 right and 7 down: g(x)=g(x)=

See Solution

Problem 15343

Write the equation for a function like f(x)=xf(x)=|x|, shifted left 1 and down 9.
g(x)= g(x)=

See Solution

Problem 15344

Find the 3rd term of the geometric sequence defined by a1=5a_1=5 and an=an13a_n=a_{n-1} \cdot 3. A. 45 B. 11 C. 125 D. 15

See Solution

Problem 15345

Identify the explicit formula for the geometric sequence: 0.5,0.1,0.02,0.004,0.0008,0.5, -0.1, 0.02, -0.004, 0.0008, \ldots from the options.

See Solution

Problem 15346

Find the 300th term of the sequence 57, 66, 75, 84, 93 using an=a1+(n1)da_{n}=a_{1}+(n-1) \cdot d. Options: A. 2784 B. 2691 C. 2748 D. 2757

See Solution

Problem 15347

Find the 13th term of the sequence given by an=84+(n1)(6)a_{n}=84+(n-1)(-6). A. 156 B. 12 C. 2 D. 162

See Solution

Problem 15348

Determine the common ratio of the geometric sequence: 243, 27, 3, 13\frac{1}{3}, 127\frac{1}{27}. A. 3 B. 13\frac{1}{3} C. 19\frac{1}{9} D. 9

See Solution

Problem 15349

Find the 3rd term of the sequence defined by: a1=6a_1 = -6, an=an1+2a_n = a_{n-1} + 2. A. -10 B. -2 C. -18 D. -4

See Solution

Problem 15350

Find the zeros of the function f(x)=x245f(x)=x^{2}-45 using the square root method. What are the xx-intercepts?

See Solution

Problem 15351

Find the real zeros of the function f(x)=x2+6x+4f(x)=x^{2}+6x+4 using the quadratic formula. Choose A, B, or C for answers.

See Solution

Problem 15352

Complete the symbols for these atoms: 28 protons & 30 neutrons, 22 protons & 21 neutrons, 15 electrons & 19 neutrons, O with 10 neutrons, Cr with mass number 54.

See Solution

Problem 15353

Find the real zeros and x-intercepts of the function f(x)=x2+10x+22f(x)=x^{2}+10x+22 using the quadratic formula.

See Solution

Problem 15354

Calculate: 78.084molL×42L78.084 \frac{\mathrm{mol}}{\mathrm{L}} \times 42 \mathrm{L}, 7.8084molL×0.9L7.8084 \frac{\mathrm{mol}}{\mathrm{L}} \times 0.9 \mathrm{L}, and 626.45mol÷34.3L626.45 \mathrm{mol} \div 34.3 \mathrm{L}.

See Solution

Problem 15355

Find when the ball hits the ground and when it passes the building using S(t)=64+48t16t2S(t)=64+48t-16t^2.

See Solution

Problem 15356

Calculate the following: 78.084molL×42L78.084 \frac{\mathrm{mol}}{\mathrm{L}} \times 42 \mathrm{L}, 7.8084molL×0.9L7.8084 \frac{\mathrm{mol}}{\mathrm{L}} \times 0.9 \mathrm{L}, and 626.45mol÷34.3L626.45 \mathrm{mol} \div 34.3 \mathrm{L}.

See Solution

Problem 15357

Calculate the expression: 5×5÷9×1+25 \times 5 \div 9 \times 1 + 2.

See Solution

Problem 15358

Calculate the value of 333777333 \sqrt{777}.

See Solution

Problem 15359

Find the profit function P(x)=0.001x2+2.45x510P(x)=-0.001 x^{2}+2.45 x-510 and determine the xx for max profit. What is the max profit in \$?

See Solution

Problem 15360

Find the weekly profit function P(x)P(x) for a sandwich store given cost C(x)=555.00+0.45xC(x)=555.00+0.45x and revenue R(x)=0.001x2+3xR(x)=-0.001x^{2}+3x. Simplify your answer.

See Solution

Problem 15361

Find the number of roast beef sandwiches to maximize profit from P(x)=0.001x2+2.45x515.00P(x)=-0.001 x^{2}+2.45 x-515.00. What is the max profit?

See Solution

Problem 15362

Find the angle CC if tanC=0.1405\tan C=0.1405.

See Solution

Problem 15363

Multiply or divide these measurements, ensuring correct significant digits: 20.947 g/mL × 25 mL = \square g 996.90 mol ÷ 33.96 L = \square mol/L 978.4 g ÷ 0.53 mL = \square g/mL

See Solution

Problem 15364

Identify the property shown in the equation: 145=451 \cdot \frac{4}{5} = \frac{4}{5}.

See Solution

Problem 15365

Multiply or divide these measurements, ensuring answers have correct significant digits:
1. 20.947gmL×25mL=g20.947 \frac{\mathrm{g}}{\mathrm{mL}} \times 25 \mathrm{mL} = \square \mathrm{g}
2. 996.90mol÷33.96L=molL996.90 \mathrm{mol} \div 33.96 \mathrm{L} = \square \frac{\mathrm{mol}}{\mathrm{L}}
3. 978.4g÷0.53mL=gmL978.4 \mathrm{g} \div 0.53 \mathrm{mL} = \square \frac{\mathrm{g}}{\mathrm{mL}}

See Solution

Problem 15366

Calculate the following:
1) 78.08molL×40L=mol78.08 \frac{\mathrm{mol}}{\mathrm{L}} \times 40 \mathrm{L} = \square \mathrm{mol}
2) 0.93molL×2.025L=mol0.93 \frac{\mathrm{mol}}{\mathrm{L}} \times 2.025 \mathrm{L} = \square \mathrm{mol}
3) 599.25m÷42.528s=ms599.25 \mathrm{m} \div 42.528 \mathrm{s} = \square \frac{\mathrm{m}}{\mathrm{s}}

See Solution

Problem 15367

Find the intersection points of the quadratics f(x)=x2+2x8f(x) = x^{2}+2x-8 and g(x)=x22x4g(x) = x^{2}-2x-4.

See Solution

Problem 15368

Find xx for these equations: a) x27=14\frac{x}{2}-7=14 b) 6x8+3=7\frac{6 x}{8}+3=-7 c) 8x+4=9.10×102\frac{8}{x}+4=9.10 \times 10^{-2} d) 34x1.5=2.70×103\frac{3}{4 x}-1.5=2.70 \times 10^{3}.

See Solution

Problem 15369

Calculate the following: 15.707 g - 1.47 g, 6.727 g + 1.40 g, and 8.87 g - 0.600 g.

See Solution

Problem 15370

Solve the equation: 6x8+3=7\frac{6 x}{8}+3=-7.

See Solution

Problem 15371

Calculate the following: 8.627 mL + 1.77 mL = ?, 2.900 mL + 18.8 mL = ?, 15.82 mL - 0.577 mL = ?

See Solution

Problem 15372

Calculate the following: 1) 10.970 g1.17 g=10.970 \mathrm{~g}-1.17 \mathrm{~g}= ? 2) 3.907 g1.57 g=3.907 \mathrm{~g}-1.57 \mathrm{~g}= ? 3) 17.50 g+0.7 g=17.50 \mathrm{~g}+0.7 \mathrm{~g}= ?

See Solution

Problem 15373

Solve for xx in the equation: 1245(x+15)=412-\frac{4}{5}(x+15)=4.

See Solution

Problem 15374

Calculate the following: 15.527 g - 1.5 g = \square g, 13.900 g + 0.87 g = \square g, 1.920 g - 0.8 g = \square g.

See Solution

Problem 15375

Multiply or divide these measurements:
1. 78.08molL×40L=mol78.08 \frac{\mathrm{mol}}{\mathrm{L}} \times 40 \mathrm{L} = \square \mathrm{mol}
2. 0.93molL×2.025L=mol0.93 \frac{\mathrm{mol}}{\mathrm{L}} \times 2.025 \mathrm{L} = \square \mathrm{mol}
3. 599.25m÷42.528s=ms599.25 \mathrm{m} \div 42.528 \mathrm{s} = \square \frac{\mathrm{m}}{\mathrm{s}}

See Solution

Problem 15376

Calculate the following: 15.700 mL13.80 mL=mL15.700 \mathrm{~mL}-13.80 \mathrm{~mL}=\square \mathrm{mL}, 8.70 mL+17.6 mL=mL8.70 \mathrm{~mL}+17.6 \mathrm{~mL}=\square \mathrm{mL}, 16.920 mL+0.5 mL=mL16.920 \mathrm{~mL}+0.5 \mathrm{~mL}=\square \mathrm{mL}.

See Solution

Problem 15377

Evaluate the expression and express the result as a+bia + bi: 41+i41i\frac{4}{1+i} - \frac{4}{1-i}

See Solution

Problem 15378

Evaluate the quotient and express it as a+bia + bi: (7+2i)(8i)2+i\frac{(7+2 i)(8-i)}{2+i}.

See Solution

Problem 15379

Solve for hh in the equation: 25h7=125h2h+3\frac{2}{5} h - 7 = \frac{12}{5} h - 2h + 3.

See Solution

Problem 15380

Find the quotient and express it as a+bia + b i: 3i4+3i\frac{3-i}{4+3 i}. Simplify your answer.

See Solution

Problem 15381

Find the zz-score for a value of 99 in a normal distribution with mean 92 and standard deviation 6. Round to two decimals.

See Solution

Problem 15382

Solve the equation t+1+1t=0t + 1 + \frac{1}{t} = 0 and express solutions as a+bia + bi.

See Solution

Problem 15383

Solve the equation x2+3x+8=0x^{2}+3 x+8=0 and express solutions as a+bia+b i.

See Solution

Problem 15384

Solve for qq: 5(3q)+4=5q11-5(3-q)+4=5q-11.

See Solution

Problem 15385

Simplify the expression by combining like terms: x(3y)+y(x+6)x(3-y)+y(x+6).

See Solution

Problem 15386

Simplify the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=x2+8x+5f(x)=x^{2}+8x+5, where h0h \neq 0.

See Solution

Problem 15387

Simplify the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=x2+3x9f(x)=x^{2}+3x-9, where h0h \neq 0.

See Solution

Problem 15388

Simplify the difference quotient f(x+h)f(x)h\frac{f(x+h)-f(x)}{h} for f(x)=9x+4f(x)=9x+4, where h0h \neq 0.

See Solution

Problem 15389

Convert these to percentages: 5.45, 190.8, 56\frac{5}{6}, 38\frac{3}{8}, 18\frac{1}{8}, 45\frac{4}{5}.

See Solution

Problem 15390

Convert these percents to decimals: a. 27%27 \%, b. 25%\frac{2}{5} \%, c. 1623%16 \frac{2}{3} \%, d. 13%\frac{1}{3} \%.

See Solution

Problem 15391

Finde die Lösung für das Gleichungssystem:
4x12x2+2x3=34 x_{1}-2 x_{2}+2 x_{3} = 3, 3x2+3x3=33 x^{2}+3 x^{3} = -3, 4x1+x2+4x3=54 x_{1}+x^{2}+4 x^{3} = 5.

See Solution

Problem 15392

Find real values of xx for the following: a. x=6\sqrt{x}=6, b. x=6\sqrt{x}=-6, c. x=6\sqrt{-x}=-6, d. x>0\sqrt{x}>0, e. x=6\sqrt{-x}=6, f. x<0\sqrt{x}<0.

See Solution

Problem 15393

Solve the system of equations: x+2yz=2x + 2y - z = 2, x+y+2z=9x + y + 2z = 9, 2x+3y3z=12x + 3y - 3z = -1.

See Solution

Problem 15394

Find (a) f(1)f(-1), (b) f(0)f(0), and (c) f(4)f(4) for the piecewise function f(x)f(x) defined as: f(x)={x2 if x<00 if x=03x+3 if x>0 f(x)=\left\{\begin{array}{ll} x^{2} & \text { if } x<0 \\ 0 & \text { if } x=0 \\ 3 x+3 & \text { if } x>0 \end{array}\right.

See Solution

Problem 15395

Find f(0)f(0), f(1)f(1), f(5)f(5), and f(6)f(6) for the piecewise function: f(x)={3x4if 3x5x35if 5<x6f(x)=\begin{cases}3x-4 & \text{if } -3 \leq x \leq 5 \\ x^3-5 & \text{if } 5<x \leq 6\end{cases}.

See Solution

Problem 15396

Compare 62+14÷26^{2}+14 \div 2 and 10082100-8^{2}: Is it equal, greater, or less?

See Solution

Problem 15397

What is 91÷591 \div 5?

See Solution

Problem 15398

Compare 12|-12| and 8|8|. Which is true: 12<8|-12|<|8|, 12>8|-12|>|8|, or 12=8|-12|=|8|?

See Solution

Problem 15399

Determine the true statement for x=5x=-5: x2+10x^{2}+10, x+x+xx+x+x are equal, or one is greater than the other.

See Solution

Problem 15400

Add or subtract these measurements, ensuring the correct significant digits:
8.70 mL - 7.8 mL = \square mL 17.570 mL + 18.8 mL = \square mL 11.9 mL + 13.577 mL = \square mL

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord