Integrals

Problem 1301

16. Find possible values of aa and bb that make the statement true. If possible, use a sketch to support your answer. (There may be more than one correct answer.) a. 21f(x)dx+15f(x)dx=abf(x)dx\int_{-2}^{1} f(x) d x+\int_{1}^{5} f(x) d x=\int_{a}^{b} f(x) d x b. 33f(x)dx+36f(x)dxabf(x)dx=16f(x)dx\int_{-3}^{3} f(x) d x+\int_{3}^{6} f(x) d x-\int_{a}^{b} f(x) d x=\int_{-1}^{6} f(x) d x c. absinxdx<0\int_{a}^{b} \sin x d x<0 d. abcosxdx=0\int_{a}^{b} \cos x d x=0
17. The graph of ff consists of line segments, as show in the figure below. Evaluate each definite integral by using geometric formulas. A. 01f(x)dx\int_{0}^{1}-f(x) d x B. 110f(x)dx\int_{11}^{0} f(x) d x C. 346f(x)dx\int_{3}^{4} 6-f(x) d x D. 1043f(x)dx\int_{10}^{4} 3 f(x) d x

See Solution

Problem 1302

10) The improper integral 016tan1x1+x2dx\int_{0}^{\infty} \frac{16 \tan ^{-1} x}{1+x^{2}} d x A) diverges B) converges to 2π22 \pi^{2} C) converges to 12π2\frac{1}{2} \pi^{2} D) converges to 32π2\frac{3}{2} \pi^{2} E) NOTA

See Solution

Problem 1303

Unanswered
Question 11 Not yet graded / 1 pts
Evaluate the following improper integral if it is convergent. If it is not convergent, write divergent 0e2xdx\int_{0}^{\infty} e^{-2 x} d x
Your Answer:

See Solution

Problem 1304

(d) 1eddx[xlnx1+x2]dx\int_{1}^{e} \frac{d}{d x}\left[\frac{x \ln x}{1+x^{2}}\right] d x

See Solution

Problem 1305

3. A tea kettle is taken off of the stove and is cooling on the countertop for 10 minutes. H(t)\mathrm{H}^{\prime}(t), a differentiable function, represents the rate at which the temperature is changing, measured in degrees Celsius per minute, and tt is measured in minutes. \begin{tabular}{|c|c|c|c|c|c|} \hlinet( min)t(\mathrm{~min}) & 0 & 2 & 5 & 9 & 10 \\ \hlineH(t)(C/min)H^{\prime}(t)\left({ }^{\circ} \mathrm{C} / \mathrm{min}\right) & -2.1 & -1.8 & -1.6 & -1.2 & -0.8 \\ \hline \end{tabular} (c) If the temperature of the tea in the kettle was 96C96^{\circ} \mathrm{C} when it was taken off the stove, what is the temperature after 10 minutes?

See Solution

Problem 1306

Assume the annual rate of change in the national debt of a country (in billions of dollars per year) can be modeled by the function D(t)=848.18+816.08t151.95t2+17.76t3D^{\prime}(t)=848.18+816.08 t-151.95 t^{2}+17.76 t^{3} where tt is the number of years since 1995. By how much did the debt increase between 1996 and 2007?2007 ?
The debt increased by $72,270.55\$ 72,270.55 billion. (Round to two decimal places as needed.)

See Solution

Problem 1307

Question 1 (a) Rationalize the denominator and simplify 23113+331+3\frac{2 \sqrt{3}-1}{1-\sqrt{3}}+\frac{3 \sqrt{3}}{1+\sqrt{3}}. [5 marks] (b) If w=4+7iw=4+7 i, express w+1ww+\frac{1}{w} in the form a+bia+b i where aa and bb are real. [5 marks]
Question 2 Given that f(x)=x+5f(x)=\sqrt{x+5} and g(x)=ln(x+5)g(x)=\ln (x+5). (i) Sketch the graph of f(x)f(x). (ii) State the domain and range of f(x)f(x). (iii) Find f1(x)f^{-1}(x) and (gf1)(x)\left(g \circ f^{-1}\right)(x). [10 marks] Question 3 (a) Given that the 5th 5^{\text {th }} term of an arithmetic progression is 21 and its 10th 10^{\text {th }} term is 41 , find (i) the common difference, dd and the first term, aa. (ii) the sum of first 20th 20^{\text {th }} term. [7 marks] (b) Expand (23x)8(2-3 x)^{8} in ascending power of xx up to the term in x3x^{3}. [3 marks]
Question 4 (a) Given that A=(2132)\mathbf{A}=\left(\begin{array}{cc}2 & -1 \\ 3 & 2\end{array}\right) and B=(a1b1)\mathbf{B}=\left(\begin{array}{ll}a & 1 \\ b & 1\end{array}\right) where aa and bb are real. Find the values of aa and bb such that AB=BA\mathbf{A B}=\mathbf{B A}. [6 marks] (b) If P=(3243)\mathbf{P}=\left(\begin{array}{ll}3 & -2 \\ 4 & -3\end{array}\right), show that the inverse matrix of P\mathbf{P} is also P\mathbf{P}. [4 marks]
Question 5 (a) Given the parametric equations x=t3tx=t^{3}-t and y=t2+ty=t^{2}+t where t>0t>0.
Find dydx\frac{d y}{d x} in terms of tt. [5 marks] (b) Evaluate xx25dx\int x \sqrt{x^{2}-5} d x by using the substitution u=x25u=x^{2}-5. [5 marks]

See Solution

Problem 1308

Evaluate the integral. (Use C for the constant of integration.) ln(x)x2dx\int \frac{\ln (x)}{x^{2}} d x

See Solution

Problem 1309

9) Знайти: 0xsht3t3dt.\int_{0}^{x} \frac{\operatorname{sh} t^{3}}{t^{3}} d t .

See Solution

Problem 1310

point)
Evaluate 032xx2+16dx\int_{0}^{3} 2 x \sqrt{x^{2}+16} d x
Answer: \square Preview My Answers Submit Answers

See Solution

Problem 1311

(1 point)
Use the Fundamental Theorem of Calculus to find 116sin(x4)x34dx=\int_{1}^{16} \frac{\sin (\sqrt[4]{x})}{\sqrt[4]{x^{3}}} d x= \square

See Solution

Problem 1312

Evaluate the definite integral. π/2π/2sin8(x)cos(x)dx=\int_{-\pi / 2}^{\pi / 2} \sin ^{8}(x) \cos (x) d x= \square
Preview My Answers Submit Answers

See Solution

Problem 1313

Let f(x)={0 if x<32 if 3x<15 if 1x<50 if x5f(x)=\left\{\begin{array}{ll} 0 & \text { if } x<-3 \\ 2 & \text { if }-3 \leq x<-1 \\ -5 & \text { if }-1 \leq x<5 \\ 0 & \text { if } x \geq 5 \end{array}\right. and g(x)=3xf(t)dtg(x)=\int_{-3}^{x} f(t) d t
Determine the value of each of the following: (a) g(5)=g(-5)= \square (b) g(2)=g(-2)= \square (c) g(0)=g(0)= \square (d) g(6)=g(6)= \square (e) The absolute maximum of g(x)g(x) occurs when x=x= \square and is the value \square It may be helpful to make a graph of f(x)f(x) when answering these questions.
Note: You can earn partial credit on this problem.

See Solution

Problem 1314

oblem 11 \vee oblem 22 \checkmark oblem 33 \checkmark oblem 4 blem 5 blem 66 \checkmark blem 77 \checkmark blem 8 lem 9

See Solution

Problem 1315

(1 point) \qquad Evaluate ππsin4xcos3xdx\int_{\pi}^{\pi} \sin ^{4} x \cos ^{3} x d x Answer: \square
Preview My Answers Submit Answers
You have attempted this problem 0 times. You have unlimited attempts remaining.

See Solution

Problem 1316

5.2 - The Definite Integral: Problem 2 (1 point)
The limit limni=1n2xi+(xi)2Δx\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \sqrt{2 x_{i}^{*}+\left(x_{i}^{*}\right)^{2}} \Delta x can be expressed as a definite integral on the interval [1,8][1,8] of the form abf(x)dx\int_{a}^{b} f(x) d x
Determine a,ba, b, and f(x)f(x). a=b=\begin{array}{l} a=\square \\ b=\square \end{array} f(x)=f(x)= \square

See Solution

Problem 1317

(1 point)
Consider the integral 26x1+x5dx\int_{2}^{6} \frac{x}{1+x^{5}} d x. Which of the following expressions represents the integral as a limit of Riemann sums? A. limni=1n2+4in1+(2+4in)5\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2+\frac{4 i}{n}}{1+\left(2+\frac{4 i}{n}\right)^{5}} B. limni=1n2+6in1+(2+6in)5\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{2+\frac{6 i}{n}}{1+\left(2+\frac{6 i}{n}\right)^{5}} C. limni=1n6n2+6in1+(2+6in)\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{6}{n} \frac{2+\frac{6 i}{n}}{1+\left(2+\frac{6 i}{n}\right)} D. limni=1n4n2+4in1+(2+4in)5\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{4}{n} \frac{2+\frac{4 i}{n}}{1+\left(2+\frac{4 i}{n}\right)^{5}} E. limni=1n4n2+4in1+(2+4in)\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{4}{n} \frac{2+\frac{4 i}{n}}{1+\left(2+\frac{4 i}{n}\right)} F. limni=1n6n2+6in1+(2+6in)5\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{6}{n} \frac{2+\frac{6 i}{n}}{1+\left(2+\frac{6 i}{n}\right)^{5}} Preview My Answers Submit Answers
You have attempted this problem 0 times.

See Solution

Problem 1318

Definition: The AREA A of the region SS that lies under the graph of the continuous function ff is the limit of the sum of the areas of approximating rectangles A=limnRn=limn[f(x1)Δx+f(x2)Δx++f(xn)Δx]A=\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty}\left[f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\ldots+f\left(x_{n}\right) \Delta x\right]
Consider the function f(x)=ln(x)x,3x10f(x)=\frac{\ln (x)}{x}, 3 \leq x \leq 10. Using the above definition, determine which of the following expressions represents the area under the graph of ff as a limit. A. limni=1n7nln(3+7in)3+7in\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{7}{n} \frac{\ln \left(3+\frac{7 i}{n}\right)}{3+\frac{7 i}{n}} B. limni=1n7nln(7in)7in\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{7}{n} \frac{\ln \left(\frac{7 i}{n}\right)}{\frac{7 i}{n}} C. limni=1n10nln(10in)10in\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{10}{n} \frac{\ln \left(\frac{10 i}{n}\right)}{\frac{10 i}{n}} D. limni=1nln(3+7in)3+7in\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\ln \left(3+\frac{7 i}{n}\right)}{3+\frac{7 i}{n}} E. limni=1n10nln(3+10in)3+10in\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{10}{n} \frac{\ln \left(3+\frac{10 i}{n}\right)}{3+\frac{10 i}{n}} Preview My Answers Submit Answers

See Solution

Problem 1319

Find the most general antiderivative of the function g(x)=x67+x76g(x)=\sqrt[7]{x^{6}}+\sqrt[6]{x^{7}}
Answer: G(x)=G(x)= \square (i) Preview My Answers Submit Answers

See Solution

Problem 1320

(1 point)
Find the function with derivative f(x)=e9xf^{\prime}(x)=e^{9 x} that passes through the point P=(0,2/9)P=(0,2 / 9). f(x)=f(x)= \square Preview My Answers Submit Answers
You have attempted this problem 0 times. You have unlimited attempts remaining.

See Solution

Problem 1321

Let f(x)=191x2f(x)=\frac{19}{\sqrt{1-x^{2}}}. Enter an antiderivative of f(x)f(x). \square

See Solution

Problem 1322

Find an antiderivative of q(t)=(t+4)2q(t)=(t+4)^{2} Q(t)=Q(t)= \square Preview My Answers Submit Answers

See Solution

Problem 1323

(1) 3x2dx\int^{3} x^{2} d x

See Solution

Problem 1324

Find the area of the region enclosed by the curves y=2cosxy=2 \cos x and y=2cos2xy=2 \cos 2 x for 0xπ0 \leq x \leq \pi.

See Solution

Problem 1325

Given F=4i^+5j^6yk^\vec{F}=4 \hat{i}+5 \hat{j}-6 y \hat{k}. Find Fdlundefined\oint \vec{F} \cdot \overrightarrow{d l} going around the loop that starts from the point (0,0,0)(0,0,0) to the point (0,0,4)(0,0,4) then to the point (0,1,4)(0,1,4) then to the point (0,1,0)(0,1,0) and back to (0,0,0)(0,0,0). a. 4 b. -4 c. 24 d. 0 e. -24

See Solution

Problem 1326

Given F=4i^+5j^6yk^\vec{F}=4 \hat{i}+5 \hat{j}-6 y \hat{k}. Find Fdlundefined\oint \vec{F} \cdot \overrightarrow{d l} going around the loop that starts from the point (0,0,0)(0,0,0) to the point (0,0,4)(0,0,4) then to the paint (0,1,4)(0,1,4) then to the point (0,1,0)(0,1,0) and back to (0,0,0)(0,0,0). a. -4 b. -24 c. 0 d. 24 e. 4
Clear my choice

See Solution

Problem 1327

3). Evaluate by changing of the ordrof integration. (a) 021exdydx\int_{0}^{2} \int_{1}^{e^{x}} d y d x (b) 01x22xxydxdy\int_{0}^{1} \int_{x^{2}}^{2-x} x y d x d y (c) 04ax/4a2axdydx\int_{0}^{4 a} \int_{x / 4 a}^{2 \sqrt{a x}} d y d x.

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord