Geometry

Problem 2101

I'm sorry, I can't assist with that request.

See Solution

Problem 2102

Question Watch Video - Show Examples
Determine the range of the following graph: Answer Attempt 2 out of 2

See Solution

Problem 2103

13. Use your fraction manipulatives to find other ways to form a whole circle. Write an equation for each way you find.
14. One fourth of a circle plus one tenth of a circle is what percent of a whole circle?
15. Two fourths of a circle plus two tenths of a circle is what percent of a whole circle?

See Solution

Problem 2104

3. Kyle and Mark started at the same location. Kyle traveled 5 miles due east, while Mark traveled 3 miles due West. How far apart are they? (A) 2 miles (B) 8 miles (C) 15\mathbf{1 5} miles (D) 12 miles

See Solution

Problem 2105

7. RT\overline{R T} has endpoints R(0,2)R(0,2) and T(3,2)T(3,2). Find the image after a dilation with scale factor 2 centered at (1,3)(1,3) followed by T(2,3)T_{(-2,-3)}. R=1+2(01),3+2(23)=(1,1)T=1+2(31),3+2(23)=(5,1)R=(3,2)T=(3,2)\begin{array}{l} R^{\prime}=1+2(0-1), 3+2(2-3)=(-1,1) \\ T^{\prime}=1+2(3-1), 3+2(2-3)=(5,1) \\ R^{\prime \prime}=(-3,-2) \\ T^{\prime \prime}=(3,-2) \end{array}

See Solution

Problem 2106

Part 1 of 3
The graph below shows a rectangular sum of n=8n=8 rectangles to approximate the area under the line from x=0x=0 to x=2x=2.
Is this a right-hand or left-hand sum? right-hand sum σ\checkmark^{\vee} \sigma^{\infty} \square \qquad What is the equation of the line? y=2xy=2 x \quad Part 3 of 3
What is the value of the sum?

See Solution

Problem 2107

Joe has a barn in his back yard. Figure A is a diagram representing the side view of the barn.
Figure A
Find the perimeter of the side of the barn.
The perimeter of the side of the barn is \square ftf t. Find the area of the side of the barn.
The area of the side of the barn is \square sq. ftf t.

See Solution

Problem 2108

Figure A: 3-Dimensional Figu (b) 18minsx18 \mathrm{mins} x

See Solution

Problem 2109

I'm sorry, I can't assist with that.

See Solution

Problem 2110

b) C=121,a=34,b=55C=121^{\circ}, a=34, b=55

See Solution

Problem 2111

7) A triangular parcel of land has sides lengths of 60 meters, 70 meters, and 82 meters. Find the area of the parcel of land.

See Solution

Problem 2112

A farmer wants to fence in a rectangular plot of land adjacent to the north wall of his barn. No fencing is needed along the barn, and the fencing along the west side of the plot is shared with a neighbor who will split the cost of that portion of the fence. If the fencing costs $10\$ 10 per linear foot to install and the farmer is not willing to spend more than $7000\$ 7000, find the dimensions for the plot that would enclose the most area. (Enter the dimensions as a comma separated list.)

See Solution

Problem 2113

A farmer wants to fence in a rectangular plot of land adjacent to the north wall of his barn. No fencing is needed along the barn, and the fencing along the west side of the plot is shared with a neighbor who will split the cost of that portion of the fence. If the fencing costs $8\$ 8 per linear foot to install and the farmer is not willing to spend more than $4000\$ 4000, find the dimensions for the plot that would enclose the most area. (Enter the dimensions as a comma separated list.)

See Solution

Problem 2114

Площадь квадрата и прямоугольника Вариант 2 1.В прямоугольнике одна сторона равна 10 , другая сторона равна 14. Найдите площадь прямоугольника.
2. Найти сторону квадрата, если площадь равна: а) 289 m2289 \mathrm{~m}^{2}; б) 45CM2\frac{4}{5} \mathrm{CM}^{2} в) 12 дм 2^{2} 3.В прямоугольнике одна сторона равна 14 , периметр равен 54 . Найдите площадь прямоугольника.
4. Периметр квадрата равен 20 cm . Найдите его площадь. 5.Найдите площадь прямоугольника, если его периметр равен 58 и одна сторона на 5 больше другой.
6. Пол комнаты, имеюощей форму прямоугольника со сторонами 4 m и 7 m , требуется покрыть паркетом из прямоугольных дощечек со сторонами 7 cm и 20 cm . Сколько потребуется таких дощечек?

See Solution

Problem 2115

Exercice n3:(8pts)\mathrm{n}^{\circ} 3:(8 \mathrm{pts}) Soit ABC un triangle tel que : AB=4;AC=6\mathrm{AB}=4 ; \mathrm{AC}=6 et BC=8\mathrm{BC}=8. Soit MM un point du segment [AB][\mathrm{AB}] tel que AM=1\mathrm{AM}=1. 1) a/ Faites une figure. b/ Construire le point N du segment [AC] tel que AN=14ACA N=\frac{1}{4} \mathrm{AC}. c/ Montrer que les droites (MN) et (BC) sont parallèles. d/ Montrer que MN =2=2. 2) Les droites (MC) et ( BN ) se coupent en I et la parallèle à (BC) passant par I co (AB) en J. a/ Montrer que IJMN=BIIIBMII\frac{\mathrm{IJ}}{\mathrm{MN}}=\frac{\mathrm{BI}_{\mathrm{II}}}{\mathrm{BM}_{\mathrm{II}}} puis IIBC=MIMB\frac{\mathrm{II}}{\mathrm{BC}}=\frac{\mathrm{MI}}{\mathrm{MB}}. b/ En déduire que IJMN+IJBC=1\frac{\mathrm{IJ}}{\mathbf{M N}}+\frac{\mathrm{IJ}}{\mathbf{B C}}=1. c/ Calculer alors IJ puis MJ.

See Solution

Problem 2116

\begin{problem} (c) Rajah di bawah menunjukkan pelan, dongakan depan dan dongakan sisi bagi sebuah pepejal.
Diagram below shows the plan, front elevation and side elevation of a solid.
\begin{enumerate} \item Lakar bentuk tiga dimensi pepejal itu. Sketch the three-dimensional shape of the solid. \item Diberi isi padu sebuah kuboid adalah 12 cm312 \mathrm{~cm}^{3}. Bandingkan isi padu antara kuboid dan isi padu pepejal dalam jawapan (i), seterusnya bandingkan nilai isi padu pepejal tersebut dalam bentuk nisbah. Given the volume of a cuboid is 12 cm312 \mathrm{~cm}^{3}. Compare the volume between the cuboid and the solid in answer (i). Hence, compare the volume of the solids in the form of ratio. \end{enumerate}
Jawapan / Answer: (i) \end{problem}

See Solution

Problem 2117

Find the circumference and area of the circle. Express answers in terms of π\pi and then round to the nearest tenth.
Find the circumferencetn terms of π\pi. C=\mathrm{C}= \square \square (Type an exact answer in terms of π\pi.)

See Solution

Problem 2118

8) In the diagram, ABC is an arc of a circle with centre O and radius 5 cm . The lines AD and CD are tangents to the circle at A and C respectively. Angle AOC=2π3A O C=\frac{2 \pi}{3} radians. Calculate the area of the region enclosed by AD,DC\mathrm{AD}, \mathrm{DC} and the arc ABC , giving you answer correct to 2 significant figures.

See Solution

Problem 2119

13. A landscape architect designed a flower garden in the shape of a trapezoid. The area of the garden is 13.92 square meters. A fence is planned around the perimeter of the garden. How many meters of fencing are needed?
14. (11) Justify Conclusions Suppose for some value of xx the solution to the equation 2.5(yx)=02.5(y-x)=0 is y=6y=6. What must be true about xx ? Justify your conclusion.
15. (11) Persevere with Problems Keith is 5 years older than Trina. Two times the sum of their ages is 62 . Write and solve an equation to find Keith's age.

See Solution

Problem 2120

B) Solve. 11) In \triangle A B C, m \Varangle A=-7 x+1, m \Varangle B=-x+13, and m \Varangle C=-2 x-4. Draw and label of the triangle. a) Solve for xx and the measures of the angles. \begin{array}{l} x= \\ m \Varangle A= \\ m \Varangle B= \\ m \Varangle C= \end{array} b) Order the sides from least to greatest.
ANSWER: \qquad << \qquad

See Solution

Problem 2121

৩. ক্ষেত্রফল নিণয় কর: (15) ए মি লय্বা এবং ৮০ সেমি চওড়া একটি ন্য্যাকবোর্ড (২) ২ মি দৈর্ঘ্য এবং ১৫০ সেমি প্রস্থ বিশিষ্ট একটি আয়তাকার টেবিলের পৃষ্ঠ (৩) ২ কিমি পূর্ব-পশ্চিম এবং ৫০০ মি উত্তর-দক্ষিণ বরাবর প্রশত আয়তাকার জমি
8. মিল কর: (ক) আয়তাকার টেবিলের পৃষ্ঠের ক্ষেত্রফল ○ ২০০ বগ কিমি

See Solution

Problem 2122

Part A Continue the rotation and draw the fan blade in the third and second quadrants after two more rotations of 9090^{\circ} each. Use the Polygon Tool to graph the rotations.
Show Hints Polygon Undo \rightarrow Redo ×\times Reset

See Solution

Problem 2123

Shalu and Monu have a garden which is in the shape of a rectangle, having dimensions 4 m×3 m4 \mathrm{~m} \times 3 \mathrm{~m}. It has tulip and rose flowered plants. Half of the garden is filled with tulip and half is covered with rose plants.
What is the area of the garden? * 1 point (a) 12 sq.m (b) 12 m (c) 12sq.cm12 \underline{\mathrm{sq}} . \mathrm{cm} (d) none of these
How much area is covered with tulip flowers? * 1 point (a) 12 sq.m (b) 12sq.cm12 \mathrm{sq} . \mathrm{cm} (c) 6sqm6 \mathrm{sq} \cdot \mathrm{m} (d) 6 sq. cm
Now they decided to fence the garden. They tries to buy the wire which * 1 point can cover the border 4 times. When they went to buy it, it was found that there are three types of wires
Type1: rs 2/m Type2: rs 4/m Type3: rs 6/m As they had only 300 rupees with them, which type of wire can they buy? (a) Type 1 or 2 (b) Type 2 or 3 (c) Type 3 (d) all the three

See Solution

Problem 2124

Übung 22 Gegeben ist ein Dreieck ABC mit A(12),B(90)\mathrm{A}(1 \mid 2), \mathrm{B}(9 \mid 0) und C(56)\mathrm{C}(5 \mid 6). a) Stellen Sie Parametergleichungen der Mittelsenkrechten gABg_{A B} und gACg_{A C} auf. b) Berechnen Sie den Schnittpunkt der Mittelsenkrechten gABg_{A B} und gACg_{A C}. c) Stellen Sie das Dreieck ABCA B C sowie die Mittelsenkrechten gABg_{A B} und gACg_{A C} zeichnerisch dar.

See Solution

Problem 2125

he perimeter. Simplify your answer.

See Solution

Problem 2126

```latex f(x) \text{ est une fonction périodique telle que } f(x) = 2x - 1 \text{ pour } x \in \left(0, \frac{3}{2}\right).
\text{Nous devons dessiner la courbe périodique sur l'intervalle } [-1, 2] \text{ avec une période } T = \frac{3}{2}. ```

See Solution

Problem 2127

7. In the graph, the translation vector maps ABC\triangle A B C to ABC\triangle A^{\prime} B^{\prime} C^{\prime}.

See Solution

Problem 2128

Find the intercepts and then use them to graph the equation. 5x+4y=205 x+4 y=20
Use the graphing tool to graph the line. Use the intercepts when drawing the line. If only one intercept exists, use it and another point to draw the line.
Click to enlarge graph

See Solution

Problem 2129

. Trapezoid JKLMJ K L M with vertices J(6,6),K(3,7)J(-6,6), K(-3,7), L(1,3)L(-1,3), and M(8,0):(x,y)(x+7,y3)M(-8,0):(x, y) \rightarrow(x+7, y-3) J(,)K()L(,)M(,,\begin{array}{l} J^{\prime}(, \square) \\ K^{\prime}(\square) \\ L^{\prime}(, \square) \\ M^{\prime}(, \quad, \quad \end{array}
What are the coordinates of KK^{\prime} ?

See Solution

Problem 2130

Watch Video
Question Find the vertices of the ellipse defined by the equation shown below. If necessary, round to the nearest tenth 4x2+25y2+24x200y+336=04 x^{2}+25 y^{2}+24 x-200 y+336=0
Answer Attempt 2 out of 2
Vertices: \square , \square and \square , \square Submit Answer

See Solution

Problem 2131

Two ants crawl around a circle of radius r=6r=6 with both xx and yy measured in inches. Both start at the point ( 6,0 ) at the same time. One bug is moving at a rate of 3in/sec3 \mathrm{in} / \mathrm{sec}. The other is moving twice as fast. When will one ant be directly above the other ant as shown below? (Give the first time this happens assuming they start at t=0\mathrm{t}=0.) Number Units

See Solution

Problem 2132

Complete the congruence statement in two different ways. RPQ\triangle \mathrm{RPQ} \cong ?
Select all that apply. A. RPQZYX\triangle R P Q \cong \triangle Z Y X B. RPQYXZ\triangle R P Q \cong \triangle Y X Z C. RPQXZY\triangle \mathrm{RPQ} \simeq \triangle X Z Y D. RPQXYZ\triangle R P Q \cong \triangle X Y Z E. RPQZXY\triangle R P Q \cong \triangle Z X Y F. RPQYZX\triangle R P Q \simeq \triangle Y Z X

See Solution

Problem 2133

Name: \qquad Use this diagram to answer the following questions. \qquad 6. In the above diagram, what is the length of side XZX Z ? a. 4.8 cm b. 8.3 cm c. 16.4 cm d. 23.0 cm \qquad 7. In the above diagram, what is the measure of X\angle X ? a. 37.637.6^{\circ} b. 39.739.7^{\circ} c. 50.250.2^{\circ} d. 52.452.4^{\circ} \qquad 8. In the above diagram, what is the measure of Z\angle Z ? a. 37.637.6^{\circ} b. 39.739.7^{\circ} c. 50.250.2^{\circ} d. 52.452.4^{\circ}

See Solution

Problem 2134

A line is shown on the coordinate plane. Determine the slope of the line.

See Solution

Problem 2135

Question Watch Video Show Ex
Find the center of the ellipse defined by the equation (x4)225+(y+5)216=1\frac{(x-4)^{2}}{25}+\frac{(y+5)^{2}}{16}=1. If necessary, round to the nearest tenth
Answer Attempt 1 out of 2
Center: \square \square Submit Answer

See Solution

Problem 2136

Задание №15 Сообщить об ошибке
15. ABCDEF GHI - правильный девятиугольник. Найди угол ВСF , ответ дай в градусах.

See Solution

Problem 2137

Considera le due funzioni: f(x)=x21 e g(x)=12x+2f(x)=|x-2|-1 \quad \text { e } g(x)=-\frac{1}{2} x+2 a. Traccia i loro grafici e determina l'area del triangolo che essi individuano. b. Risolvi graficamente la disequazione f(x)g(x)f(x) \geq g(x).

See Solution

Problem 2138

Write the equation of the conic section shown below.
Answer Attemptioutof 2 \square Submit Answer

See Solution

Problem 2139

Which of the following equations represents a line that passes through the points (1,2)(-1,-2) and (2,5)(-2,-5) ? I. y+5=3(x+2)y+5=3(x+2) II. 3x+y=13 x+y=-1
Answer Neither I only Submit Answer II only I and II

See Solution

Problem 2140

A right triangle's hypotenuse has a length of 13 . If one leg has a length of 5 , what is the length of the other leg? 8\sqrt{8}
12
18 194\sqrt{194}

See Solution

Problem 2141

1. What is a sequence of transformations that maps polygon ABCDEFA B C D E F to ABCDEFA^{\prime} B^{\prime} C^{\prime} D E^{\prime} F ?

See Solution

Problem 2142

Triangle XYZX Y Z has side lengths 4, 10, and 12. Click and drag each transformation into one of the two boxes to classify them as producing a triangle similar to triangle XYZX Y Z or not similar to triangle XYZX Y Z.
Similar to Triangle XYZX Y Z Not Similar to Triangle XYZX Y Z
Add 10 to each side length. Subtract 1 from each side length. Multiply each side length by 4. Divide each side length by 3.

See Solution

Problem 2143

7. Solve for xx.

See Solution

Problem 2144

Given that lines mm and nn are parallel and cut by transversal tt, which pair of angles are NOT congruent? 1\angle 1 and 5\angle 5 2\angle 2 and 6\angle 6 3\angle 3 and 5\angle 5 1\angle 1 and 6\angle 6

See Solution

Problem 2145

3rd Read L.
What are possible solution strategies?

See Solution

Problem 2146

The angle measurements in the diagram are represented by the following expressions. A=7x+24B=3x+92\angle A=7 x+24^{\circ} \quad \angle B=3 x+92^{\circ}
Solve for xx and then find the measure of A\angle A : A=\angle A=\square^{\circ}

See Solution

Problem 2147

Select the correct answer from each drop-down menu. Given: BONNOC\angle \mathrm{BON} \cong \angle \mathrm{NOC} Prove: AOMMOD\angle A O M \cong \triangle M O D \begin{tabular}{|l|l|} \hline Statements & Reasons \\ \hline 1. AC,MN\overline{\mathrm{AC}}, \overline{\mathrm{MN}}, and DB\overline{\mathrm{DB}} intersect at O & 1. given \\ \hline 2. AOMNOC\angle \mathrm{AOM} \cong \angle \mathrm{NOC} & 2. vertical angles theorem \\ \hline 3. MODBON\triangle \mathrm{MOD} \cong \angle \mathrm{BON} & 3. vertical angles theorem \\ \hline 4. BONNOC\angle \mathrm{BON} \cong \angle \mathrm{NOC} & 4. given \\ \hline 5. AOMMOD\angle \mathrm{AOM} \cong \angle \mathrm{MOD} & 5. transitive property of congruence \\ \hline \end{tabular}
Convert the proof to the paragraph format. Since AC,MN\overline{\mathrm{AC}}, \overline{\mathrm{MN}}, and DB\overline{\mathrm{DB}} intersect at O,AOMNOC\mathrm{O}, \angle \mathrm{AOM} \cong \angle \mathrm{NOC} and MODBON\angle \mathrm{MOD} \cong \angle \mathrm{BON} by the \square It is given that BONNOC\angle \mathrm{BON} \cong \angle \mathrm{NOC}, so by the \square , AOMMO\angle \mathrm{AOM} \cong \angle \mathrm{MO}. Reset Next linear pair postulate congruent supplements theorem vertical angles theorem transitive property of congruence

See Solution

Problem 2148

Suppose that QRS\triangle Q R S is isosceles with base SQ\overline{S Q}. Suppose also that mS=(3x+19)m \angle S=(3 x+19)^{\circ} and mQ=(5x9)m \angle Q=(5 x-9)^{\circ}. Find the degree measure of each angle in the triangle. mQ=mR=mS=\begin{array}{l} m \angle Q=\square^{\circ} \\ m \angle R=\square^{\circ} \\ m \angle S=\square^{\circ} \end{array}

See Solution

Problem 2149

The longer leg of a right triangle is 7 cm longer than the shorter leg. The hypotenuse is 9 cm longer than the shorter leg. Find the side lengths of the triangle.
Length of the shorter leg: \square cm
Length of the longer leg: \square cm
Length of the hypotenuse: \square cm

See Solution

Problem 2150

For the following right triangle, find the side length xx.

See Solution

Problem 2151

1 2 4
A ladder leans against the side of a house. The top of the ladder is 20 ft from the ground. The bottom of the ladder is 15 ft from the side of the house. Find the length of the ladder. If necessary, round your answer to the nearest tenth. \square ft

See Solution

Problem 2152

1 Identifier les mesures données Diamètre de la cheminée : d=3,4 md=3,4 \mathrm{~m}
Volume de la cheminée : V=385 m3V=385 \mathrm{~m}^{3}
2 Déterminer la formule à utiliser Puisqu'on fait référence au volume d'un cylindre, on utilise : V=Ab×h=πr2×h\begin{aligned} V & =A_{b} \times h \\ & =\pi r^{2} \times h \end{aligned}
3 Remplacer les variables par les mesures données 385=π(3,42)2×h385=\pi\left(\frac{3,4}{2}\right)^{2} \times h
4 Isoler la variable recherchée 3852,89π=2,89π×h2,89π42,40 mh\begin{aligned} \frac{385}{2,89 \pi} & =\frac{2,89 \pi \times h}{2,89 \pi} \\ 42,40 \mathrm{~m} & \approx h \end{aligned}

See Solution

Problem 2153

The length of a rectangle is 1 m more than double the width, and the area of the rectangle is 28 m228 \mathrm{~m}^{2}. Find the dimensions of the rectangle.
Length : \square m
Width : \square m
\square

See Solution

Problem 2154

V=8200 cm3h=?V=πr2h8200=π122h\begin{array}{l}V=8200 \mathrm{~cm}^{3} \\ h=? \\ V=\pi r^{2} \cdot h \\ 8200=\pi \cdot 12^{2} \cdot h\end{array}

See Solution

Problem 2155

For the following right triangle, find the side length xx.

See Solution

Problem 2156

A kite flying in the air has a 12-ft line attached to it. Its line is pulled taut and casts an 11ft11-\mathrm{ft} shadow. Find the height of the kite. If necessary, round your answer to the nearest tenth. \square ft

See Solution

Problem 2157

JIT Page
Department of Hydraulic \& Water Resource Engineering
41. A stream has the following cross -sectional data \begin{tabular}{|c|c|c|c|c|} \hline \multirow[t]{2}{*}{Station} & \multirow[t]{2}{*}{Distance up the stream (km)} & \multirow[t]{2}{*}{Elevation of the stream bed (m)} & \multicolumn{2}{|l|}{Cross-section Trapezoid} \\ \hline & & & Bed width B(m) & side slope (m) \\ \hline 1 & 50 & 100.0 & 15 & 1.5 \\ \hline 2 & 52 & 101.0 & 14 & 1.5 \\ \hline 3 & 54 & 102 & 13 & 1.25 \\ \hline \end{tabular}

For a discharge of 150m3/s\mathbf{1 5 0} \mathbf{m}^{\mathbf{3}} / \mathrm{s}, the depth of flow of the downstream -most section one (1) is 5.10m\mathbf{5 . 1 0 m} Assume n=0.025\boldsymbol{n}=\mathbf{0 . 0 2 5} and gradual transition .using the standard - step method computes the wate surface elevation at section 2&32 \& 3.

See Solution

Problem 2158

PQR\triangle P Q R is rotated 180180^{\circ} around the origin to form PQR\triangle P^{\prime} Q^{\prime} R^{\prime}.
Which coordinate is the same as the xx-coordinate of point PP^{\prime} ? xx-coordinate of point PP yy-coordinate of point PP
Opposite of xx-coordinate of point PP
Opposite of yy-coordinate of point PP

See Solution

Problem 2159

i-Ready Rotations - Instruction - Level H GHI\triangle G H I will be rotated 180 around the origin to form GHI\triangle G^{\prime} H^{\prime} I^{\prime}. 180180^{\circ} rotation: (x,y)(x,y)(x, y) \rightarrow(-x,-y)
What are the coordinates of point HH^{\prime} after the rotation? (7,5)(7,-5) (5,7)(5,-7) (7,5)(-7,-5) (5,7)(5,7)

See Solution

Problem 2160

Math 2 Mid - Unit 4 Test Name: \qquad Iineen
PART 1: For each question choose the best answer from the choices provided.
1. Fill in the Blank: Supplementary angles are two angles whose measure of a sum of \qquad - Complementary angles are two angles whose measures have a sum of \qquad - . Vertical angles are \qquad . OPTIONS Supplementary Linear Congruent Adjacent - 1\angle 1 and 2\angle 2 are supplementary. The m1=3x15m \angle 1=3 x-15 and m2=5x+27m \angle 2=5 x+27. Find the value of xx. x=x= \qquad

Find the value of xx in the triangle. (Picture not drawn to scale) x=x= \qquad
MATCH each triangle with its correct classification by its sides. (Drag-and-Drop in Canvas) Classification by sides BANK of CLASSIFICATIONS
Scalene Isosceles Equilateral

See Solution

Problem 2161

The length of a shadow of a building is 29 m . The distance from the top of the building to the tip of the shadow is 36 m . Find the height of the building. If necessary, round your answer to the nearest tenth. \square m

See Solution

Problem 2162

For the following right triangle, find the side length xx. Round your answer to the nearest hundredth.

See Solution

Problem 2163

LEVEL: 1/1 7 more questions to go AFTER LEVEL: 1
Given that point G is the incenter of HJK\triangle H J K, which of the following is true? GF=EGG F=E G GJ=EGG J=E G HE=EKH E=E K Two of these Submit Porents Feedbock Questions? About Careers Terms of Service PRIVACY POLICY Contact Us Desk 1

See Solution

Problem 2164

Graph the following equation and if possible, determine the slope. x=3x=-3
Use the graphing tool on the right to graph the equation.
Click to enlarge graph
What is the slope of the line? A. m=\mathrm{m}= \square (Type an integer or a fraction.) B. The slope is not defined.

See Solution

Problem 2165

Question Q) Walk-Through Example TSIA Style
Two hikers start at a ranger station and leave at the same time. One hiker heads due west at 3 mph . The other hiker heads due north at 4 mph . How far apart are the hikers after 2 hours of hithen? A) 3 miles (8) 7 miks C) 10 miks b) 14 mils

See Solution

Problem 2166

22. Find the measure of each missing angle. m1=m<3=m2=m4=\begin{array}{ll} m \angle 1= & m<3= \\ m \angle 2= & m \angle 4= \end{array}
23. Find the measure of the indicated measures. m1=m<4=m2=m5=\begin{array}{ll} m \angle 1= & m<4= \\ m \angle 2= & m \angle 5= \end{array} m3=m \angle 3=

See Solution

Problem 2167

15. ABCDEF GHI - правильный девятиугольник. Найди угол BCF , ответ дай в градусах.
Введи ответ

See Solution

Problem 2168

What is the rate of change of yy with respect to xx shown in the graph?
The rate of change is \square

See Solution

Problem 2169

Swing an arc that intersects the angle's rays.
Question 2(Multiple Choice Worth 1 points) (01.02 LC)
Angle ABCA B C has point EE on ray BAB A and point DD on ray BCB C. Points EE and DD are equidistant from point BB. To copy angle ABCA B C, which of the following needs to be identified for construction? The distance between points E and D The point in the angle that is equidistant from points EE and DD The endpoint of rays BAB A and BCB C The point outside of the angle that is equidistant from points E and D
Question 3(Multiple Choice Worth 1 points) (01.02 LC)

See Solution

Problem 2170

Question 3(Multiple Choice Worth 1 points) (01.02 LC)
Sasha is bisecting a segment. First, she places the compass on one endpoint, opens it to a width larger than half of the segment, and swings an arc on either side of the segm Then, she keeps the compass the same with and places it on the other endpoint. What is her next step? Swing arcs on both sides to intersect the first two arcs created. Swing an arc that intersects the segment. Swing arcs that intersect a point that is not on the segment. Swing an arc that intersects the opposite endpoint. Question 4(Multiple Choice Worth 1 points) uestion Question 1 (Answered)

See Solution

Problem 2171

What is the rate of change of yy with respect to xx ? (A) 13-\frac{1}{3} (B) 3 (C) -3

See Solution

Problem 2172

1. Describe the graph of the solutions of each inequality. a. y<3x+5y<-3 x+5

See Solution

Problem 2173

Find the values of xx and yy. State which theorem(s) you used.

See Solution

Problem 2174

5. Find the vector and parametric equation of the line that passes through the point (2,1,0)(2,1,0) and parallel to v=<2,1,5>v=<2,-1,5>.

See Solution

Problem 2175

4. \qquad J=\angle J= \qquad K=\angle K= \qquad L=\angle \mathrm{L}= \qquad

See Solution

Problem 2176

I'm sorry, I can't assist with that request.

See Solution

Problem 2177

2. What is the magnitude of resultant vector where u=42,2 and v=52,3\vec{u}=\langle-4 \sqrt{2},-2\rangle \text { and } \vec{v}=\langle 5 \sqrt{2}, 3\rangle

See Solution

Problem 2178

te-Mecklenburg Schools Math 2. Unit 6. Lesson 2 Student nat is the measure of angle ABCA^{\prime} B^{\prime} C ? a. 2020^{\circ} b. 4040^{\circ} c. 6060^{\circ} d. 8080^{\circ}

See Solution

Problem 2179

10. In the diagram below, circle center OO has diameter AC,AO\overline{A C}, A O is 4 units long, and the measure of arcAB\operatorname{arc} A B is 120120^{\circ}. What is the area of the shaded region? F. 16π383\frac{16 \pi}{3}-8 \sqrt{3} G. 8π323\frac{8 \pi}{3}-2 \sqrt{3} H. 8π343\frac{8 \pi}{3}-4 \sqrt{3} J. 8π383\frac{8 \pi}{3}-8 \sqrt{3} K. 4π343\frac{4 \pi}{3}-4 \sqrt{3}

See Solution

Problem 2180

The figure below represents part of a regular polygon with nn sides inscribed in a circle with center OO. In terms of nn, what is the degree measure of OBC\angle O B C ? A. 90180n90-\frac{180}{n} B. 180n180-n C. 180n360180 n-360 D. 180360n180-\frac{360}{n} E. 360n\frac{360}{n}

See Solution

Problem 2181

A rectangular box with length 22 inches, width 5 inches, and height 5 inches is to be packed with steel balls of radius 2 inches in such a way that the centers of the balls are collinear. What is the maximum number of balls that can fit into a box, given that balls should not protrude out of the box? A. 0 B. 5 C. 6 D. 10 E. 11

See Solution

Problem 2182

A quadrilateral PQRSP Q R S is inscribed in a circle. The length of PQ\overline{P Q} is 16 inches, and the length of PS\overline{P S} is 12 inches. Given that the measure of arcPQ\operatorname{arc} P Q equals the measure of arc SRS R and the measure of arc PSP S equals the measure of arcQR\operatorname{arc} Q R, what is the area of the circle in square inches? F. 20π20 \pi G. 50π50 \pi H. 100π100 \pi J. 200π200 \pi K. 400π400 \pi

See Solution

Problem 2183

USING THE SHAPE TOOL, CREATE A LINE TO CONNECT EACH PROBLEM TO ITS SOLUTION AT THE RIGHT. NOT ALL CHOICES WILL BE USED. a Kevin needs to replace four rectangular windows. Each window measures 2.75 ft by 4 ft . Find the square feet of glass that Kevin will need for the windows.
B Julie is making a banner shaped like a parallelogram with a base of 8148 \frac{1}{4} feet and a height of 6 feet. How many square feet of material will Julie need for the banner? ``` C Rhett's rectangular room measures 12.5 feet by 13 feet. His rectangular closet measures 3.5 feet by 5 feet. How much greater is the area of his room than his closet? ``` 11ft211 \mathrm{ft}^{2} 49.5ft249.5 \mathrm{ft}^{2} 145ft2145 \mathrm{ft}^{2} 44ft244 \mathrm{ft}^{2} 162.5ft2162.5 \mathrm{ft}^{2} - Manouvering the Middle LLC, 2019

See Solution

Problem 2184

The volume of a sphere with radius r is given by V=43πr3. The volume of a cylinder with height h and base area A is given by V=Ah.\text{The volume of a sphere with radius } r \text{ is given by } V = \frac{4}{3} \pi r^{3}. \text{ The volume of a cylinder with height } h \text{ and base area } A \text{ is given by } V = A h. \text{What is the volume of the silo to the nearest cubic foot?} A. 5,864B. 7,959C. 20,944D. 23,038E. 245,044\text{A. } 5,864 \quad \text{B. } 7,959 \quad \text{C. } 20,944 \quad \text{D. } 23,038 \quad \text{E. } 245,044 \text{Radius of the base of the cylinder is 10 feet and the height of the cylindrical part is 60 feet.}

See Solution

Problem 2185

In the diagram below, a chord of length 18 centimeters is bisected by a line segment that starts at the center and is 6 centimeters from the center. What is the radius of the circle in centimeters? A. 3133 \sqrt{13} B. 353 \sqrt{5} C. 10 D. 12 E. 15

See Solution

Problem 2186

skip
Find the measure of 8\measuredangle 8. [?]

See Solution

Problem 2187

What is the value of xx in simplest radical form?

See Solution

Problem 2188

Watch Videc
Given: BD\overline{B D} and AC\overline{A C} bisect each other. Prove: ABCD\overline{A B} \| \overline{C D}.
Step
1
2
3 BD\overline{B D} and AO\overline{A O} bisect each other AEEC\overline{A E} \cong \overline{E C} DEEB\overline{D E} \cong \overline{E B}
Reason
Given
A segment bisector divides a segment into two congruent segments
Select a Reason.
A B

See Solution

Problem 2189

Reorder the steps of the proof to make sure that steps that are logically dependent on Given: BE,OHFD\angle B \simeq \angle E, O H \simeq F D and BODEB O \sim D E,
Prove: CGIDIG\angle C G I \cong \angle D I G. \begin{tabular}{cc} step & statement \\
1. & BE\angle B \cong \angle E \\ \hline 2 & CHHD\overline{C H} \cong \overline{H D} \\ 3 & BCDE\overline{B C} \cong \overline{D E} \\ 4 & BCGDI\triangle B C G \cong \overline{D I} \\ 5 & GHIH\overline{G H} \cong \overline{I H} \\ 6 & HDCEDI\angle H D C \cong \angle E D I \\ 7 & CGIDIG\angle C G I \cong \angle D I G \\ 8 & BCDHDC\angle B C D \cong \angle H D C \\ 9 & BCGHCD\angle B C G \cong \angle H C D \\ \hline & EDI\angle E D I \end{tabular}

Heaton
Given
Corresponding Parts of Congrient Triangles are Congruent (CRCTC) ABA Congruent segments added to congruent sezments form congrelt se Vertical angle are congment In a triangle, angles opposite of congnent sides are congruent In a triangle, angles opposite of congrient sitis are congrient Vertical angles are congruent Transitive Property

See Solution

Problem 2190

Area of shaded region =24=24 in 2^{2} t=t= \square inches

See Solution

Problem 2191

Back to Content 5.18 Quiz: Quadrilaterals and Their Properties
What is the length of the midsegment of this trapezoid? Enter your answer in the box. \square units 1 2 3 Next

See Solution

Problem 2192

["A A parallelogram has a base of 13.4 yards and a height of 22.8 yards. What is the area? \square square yards Submit

See Solution

Problem 2193

Classify this triangle by its sides and angle

See Solution

Problem 2194

As part of his sinister plan, Dr. Evil decides to mail Mini-Me to Austin Powers, in order to conduct his dirty work. The box to be used for shipment must be a rectangular storage container with a volume of 10ft310 \mathrm{ft}^{3}. The top and bottom of the box will be square, but the sides will be somewhat longer. In addition, a different material will be used for the top and bottom. Dr. Evil has invented a breathable cardboard that costs $5\$ 5 per square foot (the regular cardboard sides cost only $2\$ 2 per square foot). Design a container for Mini-Me that will meet the volume requirements while minimizing the cost. Unfortunately, Dr. Evil's henchmen (who will eventually build the box) can only measure within half a foot. Rounding your dimensions to the nearest half-foot, what is the volume of the new box and how much will it cost to build?

See Solution

Problem 2195

Which of these terms does not describe polygon ABCDA^{\prime} B^{\prime} C^{\prime} D ? A. transformation B. image C. rotation D. preimage

See Solution

Problem 2196

6 Vier gleichseitige Dreiecke bilden den Mantel einer quadratischen Pyramide mit der Kantenlänge 10 cm . a) Berechne die Länge des eingezeichneten Streckenzuges. A, B, C sind Kantenmitten. b) Zeichne das Schrägbild der Pyramide und trage den Streckenzug ein.

See Solution

Problem 2197

Bestimme die lineare Funktionsgleichung für den Punkt P(2,0)P(2,0) und den Winkel α=80,54\alpha = 80,54^{\circ}.

See Solution

Problem 2198

Find the standard form of the equation of a circle with center (2,3)(2,3) and touching the x -axis. Graph the equation.
The standard form of the equation of a circle is (x2)2+(y3)2=9(x-2)^{2}+(y-3)^{2}=9. (Type an equation. Simplify your answer.) Use the graphing tool to graph the circle.

See Solution

Problem 2199

Question Watch Video Show Examples
What is the volume of a sphere with a diameter of 3.6 ft , rounded to the nearest tenth of a cubic foot?
Answer Attempt 1 out of 2 \square ft3\mathrm{ft}^{3} Submit Answer

See Solution

Problem 2200

Question Watch Video Show Examples
What is the volume of a sphere with a radius of 6.6 cm , rounded to the nearest tenth of a cubic centimeter?
Answer Attempt 1 out of 2

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord