Get Started for Free
Overview
Archive
Sign In
Math
Arithmetic
Fractions and Decimals
Measurement
Geometry
Word Problems
Algebra
Calculus
Statistics
Probability
Number Theory
Discrete Mathematics
Linear Algebra
Differential Equations
Trigonometry
Finance
Data
Graph
Diagram & Picture
Math Statement
Expression
Equation
Inequality
System
Matrix
Vector
Set
Function
Sequence
Series
Vector Space
Distribution
Solve
Simplify
Model
Prove
Analyze
Numbers & Operations
Data & Statistics
Discrete
Natural Numbers
Fractions
Decimals
Integers
Rationals
Percentages
Ratios & Proportions
Order of Operations
Linearity
Absolute Value
Quadratics
Rational
Exponents & Radicals
Polynomials
Exponentials
Logarithms
Matrices
Complex Numbers
Angles
Triangles
Circles
Congruence & Similarity
Pythagorean Theorem
Mensuration
Transformations
Coordinates
Data Collection & Representation
Measures of Central Tendency
Measures of Spread
Statistical Inference
Right Triangle
Non-Right Triangle
Unit Circle & Radians
Identities & Equations
Applications
Limits & Continuity
Derivatives
Integrals
Combinatorics
Word Problem
Sequences & Series
Archive
/
Math
Expression
Problem 9701
Subtract the polynomials:
(
3
x
2
+
2
x
+
4
)
−
(
x
2
+
2
x
+
1
)
=
?
(3 x^{2}+2 x+4)-(x^{2}+2 x+1)=?
(
3
x
2
+
2
x
+
4
)
−
(
x
2
+
2
x
+
1
)
=
?
A.
2
x
2
+
3
2 x^{2}+3
2
x
2
+
3
B.
2
x
2
+
4
x
+
3
2 x^{2}+4 x+3
2
x
2
+
4
x
+
3
C.
2
x
2
+
5
2 x^{2}+5
2
x
2
+
5
D.
2
x
2
+
4
x
+
5
2 x^{2}+4 x+5
2
x
2
+
4
x
+
5
See Solution
Problem 9702
Identify the irrational numbers from the following: a.
42
\sqrt{42}
42
, b.
36
\sqrt{36}
36
, c.
361
\sqrt{361}
361
, d.
18
\sqrt{18}
18
, e.
2
−
5
2
2-5\sqrt{2}
2
−
5
2
, f.
3
÷
2
\sqrt{3} \div 2
3
÷
2
. Select all that apply.
See Solution
Problem 9703
Subtract the polynomials: (4x² - x + 6) - (x² + 3) = ? A. 5x² - x + 9 B. 3x² - x + 3 C. 4x² - 2x + 9 D. 4x² - 2x + 3
See Solution
Problem 9704
Write two decimals equivalent to 5.300 and 3.7.
See Solution
Problem 9705
Calculate
75.11
−
4.4
75.11 - 4.4
75.11
−
4.4
.
See Solution
Problem 9706
Calculate the product of
7
2
\frac{7}{2}
2
7
and
7
2
\frac{7}{2}
2
7
.
See Solution
Problem 9707
Calculate the value of
31
/
2
×
31
/
2
31 / 2 \times 31 / 2
31/2
×
31/2
.
See Solution
Problem 9708
Calculate
3
1
2
×
31
2
3 \frac{1}{2} \times \frac{31}{2}
3
2
1
×
2
31
.
See Solution
Problem 9709
Divide 2,789 by 36.
See Solution
Problem 9710
C. 5 hundreds
×
10
=
\times 10=
×
10
=
hundreds. What is the result?
See Solution
Problem 9711
Calculate
2
,
789
÷
36
2,789 \div 36
2
,
789
÷
36
.
See Solution
Problem 9712
Find the least common multiple (LCM) of 15 and 40. A. 25 B. 600 C. 120 D. 5
See Solution
Problem 9713
Calculate
215
÷
2
215 \div 2
215
÷
2
.
See Solution
Problem 9714
Convert
0.000450
c
m
0.000450 \mathrm{~cm}
0.000450
cm
to
n
m
\mathrm{nm}
nm
.
See Solution
Problem 9715
20 tens = 200
See Solution
Problem 9716
Divide 34.75 by 5.
See Solution
Problem 9717
Convert 37.5 inches to meters (
m
m
m
).
See Solution
Problem 9718
Multiply and simplify:
(
10
+
8
6
)
(
2
6
+
5
10
)
(\sqrt{10}+8 \sqrt{6})(2 \sqrt{6}+5 \sqrt{10})
(
10
+
8
6
)
(
2
6
+
5
10
)
.
See Solution
Problem 9719
Iko's temperature rose by
1
1
∘
11^{\circ}
1
1
∘
and fell by
1
4
∘
14^{\circ}
1
4
∘
. Write the addition expression and model it with integer chips.
See Solution
Problem 9720
Multiply and simplify:
(
5
10
+
7
6
)
(
2
6
−
8
10
)
(5 \sqrt{10}+7 \sqrt{6})(2 \sqrt{6}-8 \sqrt{10})
(
5
10
+
7
6
)
(
2
6
−
8
10
)
See Solution
Problem 9721
Calculate the interior angle sum of a 9-sided polygon. Round to the nearest tenth if needed.
See Solution
Problem 9722
Divide 139 by 4 using long division.
See Solution
Problem 9723
Divide 18 by 153.
See Solution
Problem 9724
Calculate the value of
(
4
4
)
3
\left(4^{4}\right)^{3}
(
4
4
)
3
.
See Solution
Problem 9725
Find
(
−
5
)
+
6
(-5) + 6
(
−
5
)
+
6
using a number line. How does it change for
(
−
5
)
+
(
−
6
)
(-5) + (-6)
(
−
5
)
+
(
−
6
)
?
See Solution
Problem 9726
Calculate the interior angle sum of an 8-sided polygon. Round to the nearest tenth if needed. Use the formula
S
=
(
n
−
2
)
×
180
S = (n-2) \times 180
S
=
(
n
−
2
)
×
180
where
n
=
8
n = 8
n
=
8
.
See Solution
Problem 9727
Iko's temperature changed by +11° and then -14°. Write the expression and find the net change:
+
11
+
(
−
14
)
=
−
3
°
+11 + (-14) = -3°
+
11
+
(
−
14
)
=
−
3°
What is the net change?
See Solution
Problem 9728
Calculate the value of
3
12
3
3
\frac{3^{12}}{3^{3}}
3
3
3
12
.
See Solution
Problem 9729
Calculate the value of
6
4
⋅
2
4
6^{4} \cdot 2^{4}
6
4
⋅
2
4
.
See Solution
Problem 9730
Is
8
×
8
5
8 \times 8^{5}
8
×
8
5
the same as
(
8
×
8
)
5
(8 \times 8)^{5}
(
8
×
8
)
5
? Justify your answer.
See Solution
Problem 9731
Use a number line to find the sum of
4
+
(
−
8
)
4 + (-8)
4
+
(
−
8
)
. Explain your method in detail.
See Solution
Problem 9732
Divide 48 by 4 and use the circle graph to answer questions 8-10.
See Solution
Problem 9733
Convert
375
m
/
s
375 \mathrm{~m/s}
375
m/s
to
f
t
/
m
i
n
\mathrm{ft/min}
ft/min
.
See Solution
Problem 9734
Use a number line to show how to calculate the sum of
4
+
(
−
8
)
4 + (-8)
4
+
(
−
8
)
.
See Solution
Problem 9735
Rationalize and simplify the expression:
13
3
\sqrt{\frac{13}{3}}
3
13
.
See Solution
Problem 9736
Calculate the slope of the line connecting the points
(
−
4
,
9
)
(-4,9)
(
−
4
,
9
)
and
(
10
,
−
6
)
(10,-6)
(
10
,
−
6
)
.
See Solution
Problem 9737
Rationalize and simplify the expression:
21
77
\frac{\sqrt{21}}{\sqrt{77}}
77
21
.
See Solution
Problem 9738
Calculate
(
1
6
)
5
\left(\frac{1}{6}\right)^5
(
6
1
)
5
.
See Solution
Problem 9739
Calculate
12
8
15
−
7
+
7
15
+
15
12 \frac{8}{15}-7+\frac{7}{15}+15
12
15
8
−
7
+
15
7
+
15
and simplify.
See Solution
Problem 9740
Calculate
3
3
−
3
4
÷
3
3
3^{3}-3^{4} \div 3^{3}
3
3
−
3
4
÷
3
3
.
See Solution
Problem 9741
Find the area inside the sidewalks given by
1
2
(
40
)
(
30
)
+
1
2
(
40
)
(
20
)
\frac{1}{2}(40)(30)+\frac{1}{2}(40)(20)
2
1
(
40
)
(
30
)
+
2
1
(
40
)
(
20
)
. Show your work.
See Solution
Problem 9742
Calculate
−
189.987
−
30.87
-189.987 - 30.87
−
189.987
−
30.87
. What is the result?
See Solution
Problem 9743
Convert
19.3
g
/
m
L
19.3 \mathrm{~g} / \mathrm{mL}
19.3
g
/
mL
to
l
b
/
i
n
3
\mathrm{lb} / \mathrm{in}^{3}
lb
/
in
3
.
See Solution
Problem 9744
Evaluate:
10
+
3
3
÷
9
10 + 3^{3} \div 9
10
+
3
3
÷
9
See Solution
Problem 9745
Simplify:
9
10
⋅
9
9^{10} \cdot 9
9
10
⋅
9
See Solution
Problem 9746
Find the value of
ln
e
8
\ln e^{8}
ln
e
8
.
See Solution
Problem 9747
Convert the following expressions to decimals: a.
(
3
×
10
)
+
(
5
×
1
)
+
(
2
×
1
10
)
+
(
7
×
1
100
)
+
(
6
×
1
1000
)
(3 \times 10)+(5 \times 1)+(2 \times \frac{1}{10})+(7 \times \frac{1}{100})+(6 \times \frac{1}{1000})
(
3
×
10
)
+
(
5
×
1
)
+
(
2
×
10
1
)
+
(
7
×
100
1
)
+
(
6
×
1000
1
)
b.
(
9
×
100
)
+
(
2
×
10
)
+
(
3
×
0.1
)
+
(
7
×
0.001
)
(9 \times 100)+(2 \times 10)+(3 \times 0.1)+(7 \times 0.001)
(
9
×
100
)
+
(
2
×
10
)
+
(
3
×
0.1
)
+
(
7
×
0.001
)
c.
(
5
×
1
,
000
)
+
(
4
×
100
)
+
(
8
×
1
)
+
(
6
×
1
100
)
+
(
5
×
1
1000
)
(5 \times 1,000)+(4 \times 100)+(8 \times 1)+(6 \times \frac{1}{100})+(5 \times \frac{1}{1000})
(
5
×
1
,
000
)
+
(
4
×
100
)
+
(
8
×
1
)
+
(
6
×
100
1
)
+
(
5
×
1000
1
)
See Solution
Problem 9748
One scoop of rice weighs
3
9
3^{9}
3
9
mg. a. Find weight of
s
s
s
scoops:
3
9
⋅
s
3^{9} \cdot s
3
9
⋅
s
. Weight of 5 scoops? b. A grain weighs
3
3
3^{3}
3
3
mg. How many grains in 1 scoop?
See Solution
Problem 9749
Simplify the difference quotient
f
(
x
+
h
)
−
f
(
x
)
h
\frac{f(x+h)-f(x)}{h}
h
f
(
x
+
h
)
−
f
(
x
)
for
f
(
x
)
=
x
2
+
4
x
+
8
f(x)=x^{2}+4x+8
f
(
x
)
=
x
2
+
4
x
+
8
, where
h
≠
0
h \neq 0
h
=
0
.
See Solution
Problem 9750
Simplify the expression
(
x
−
1
/
5
y
1
/
6
)
120
\left(\frac{x^{-1 / 5}}{y^{1 / 6}}\right)^{120}
(
y
1/6
x
−
1/5
)
120
using exponent properties.
See Solution
Problem 9751
Kane runs 3 miles and increases by
1
4
\frac{1}{4}
4
1
mile each week. Write an expression for distance after
w
w
w
weeks.
See Solution
Problem 9752
Write the expanded notation for 412.638 using fractions and decimals. What did Nancy and Charles write?
See Solution
Problem 9753
Calculate the expression:
18
+
2
×
3
5
−
2
\frac{18+2 \times 3}{5-2}
5
−
2
18
+
2
×
3
.
See Solution
Problem 9754
Find the absolute value of -22:
∣
−
22
∣
|-22|
∣
−
22∣
See Solution
Problem 9755
Find the absolute value of 6.43, represented as
∣
6.43
∣
|6.43|
∣6.43∣
.
See Solution
Problem 9756
Simplify the radical expression: sqrt(27) =
See Solution
Problem 9757
Simplify the radical expression using Property 1:
sqrt
(
x
)
\operatorname{sqrt}(x)
sqrt
(
x
)
for
x
\sqrt{x}
x
and
root
(
x
)
(
y
)
\operatorname{root}(x)(y)
root
(
x
)
(
y
)
for
y
x
\sqrt[x]{y}
x
y
. Find
625
a
6
b
9
3
.
\sqrt[3]{625 a^{6} b^{9}}.
3
625
a
6
b
9
.
See Solution
Problem 9758
Rationalize the denominator of the expression:
3
7
\frac{3}{\sqrt{7}}
7
3
.
See Solution
Problem 9759
Find the absolute value of -7 and 3. What is
∣
−
7
∣
|-7|
∣
−
7∣
and
∣
3
∣
|3|
∣3∣
?
See Solution
Problem 9760
Find the volume of a box with dimensions 6 in, 7 in, 8 in in liters. (2.54 cm = 1 in). Also, convert 80 m/s to mph.
See Solution
Problem 9761
Combine the terms: sqrt(32) - sqrt(32) + sqrt(8) = ?
See Solution
Problem 9762
Multiply: (sqrt(2)+sqrt(5))(sqrt(2)-sqrt(5))=
See Solution
Problem 9763
Write 3,230,000 in scientific notation.
3
,
230
,
000
=
3,230,000=
3
,
230
,
000
=
See Solution
Problem 9764
Rationalize the denominator:
8
s
q
r
t
(
x
)
−
s
q
r
t
(
y
)
=
\frac{8}{sqrt(x)-sqrt(y)}=
s
q
r
t
(
x
)
−
s
q
r
t
(
y
)
8
=
See Solution
Problem 9765
Evaluate
y
2
+
6
y
+
9
y^2 + 6y + 9
y
2
+
6
y
+
9
for
y
=
−
4
y = -4
y
=
−
4
.
See Solution
Problem 9766
Rationalize and simplify the following fractions: 7.
2
5
\frac{2}{\sqrt{5}}
5
2
8.
4
3
2
\frac{4}{3\sqrt{2}}
3
2
4
See Solution
Problem 9767
Conner did sit-ups on Mon, Tue, Wed. Write the total in standard form:
600
+
20
+
4
600+20+4
600
+
20
+
4
. If 3 students read 4 books each, total books:
3
×
4
3 \times 4
3
×
4
.
See Solution
Problem 9768
Which extreme temperature in Rapid City,
−
1
9
∘
F
-19^{\circ} \mathrm{F}
−
1
9
∘
F
or
9
2
∘
F
92^{\circ} \mathrm{F}
9
2
∘
F
, is closer to the average of
45.
2
∘
F
45.2^{\circ} \mathrm{F}
45.
2
∘
F
?
See Solution
Problem 9769
a. Find the power for the surface area of a cube. b. Find the power for the volume of a cube. Surface area:
6
s
2
6s^2
6
s
2
, Volume:
s
3
s^3
s
3
.
See Solution
Problem 9770
Select subtraction problems with a difference of 1.65: 27.30-16.65, 11.23-9.58, 40.4-23.9.
See Solution
Problem 9771
Calculate the area of a parallelogram with base
3.5
3.5
3.5
units and height
3
3
3
units.
See Solution
Problem 9772
1.125 divided by 0.75 equals what?
See Solution
Problem 9773
An art collector bought a painting for \
2.3
m
i
l
l
i
o
n
a
n
d
s
o
l
d
i
t
f
o
r
$
4.1
m
i
l
l
i
o
n
.
F
i
n
d
h
e
r
p
r
o
f
i
t
:
2.3 million and sold it for \$4.1 million. Find her profit:
2.3
mi
ll
i
o
nan
d
so
l
d
i
t
f
or
$4.1
mi
ll
i
o
n
.
F
in
d
h
er
p
ro
f
i
t
:
4.1 - 2.3$.
See Solution
Problem 9774
Calculate the product of 0.8 and 0.2:
0.8
×
0.2
0.8 \times 0.2
0.8
×
0.2
.
See Solution
Problem 9775
Find the product and express it as
a
+
b
i
a + b i
a
+
bi
:
(
7
−
2
i
)
(
1
+
i
)
(7 - 2 i)(1 + i)
(
7
−
2
i
)
(
1
+
i
)
.
See Solution
Problem 9776
Evaluate the quotient and express it as
a
+
b
i
a + b i
a
+
bi
:
4
−
3
i
1
−
4
i
\frac{4 - 3 i}{1 - 4 i}
1
−
4
i
4
−
3
i
See Solution
Problem 9777
Evaluate the quotient and express it as
a
a
a
:
3
−
7
i
1
−
3
i
\frac{3-7 i}{1-3 i}
1
−
3
i
3
−
7
i
See Solution
Problem 9778
Multiply 645 by 836. What is the result?
See Solution
Problem 9779
Convert the fraction
8
9
\frac{8}{9}
9
8
into its decimal form.
See Solution
Problem 9780
Find the limit:
lim
x
→
2
2
f
(
x
)
g
(
x
)
3
f
(
x
)
−
g
(
x
)
\lim _{x \rightarrow 2} \frac{2 f(x) g(x)}{3 f(x)-g(x)}
x
→
2
lim
3
f
(
x
)
−
g
(
x
)
2
f
(
x
)
g
(
x
)
given that
lim
x
→
2
f
(
x
)
=
4
,
lim
x
→
2
g
(
x
)
=
−
1.
\lim _{x \rightarrow 2} f(x)=4, \quad \lim _{x \rightarrow 2} g(x)=-1.
x
→
2
lim
f
(
x
)
=
4
,
x
→
2
lim
g
(
x
)
=
−
1.
See Solution
Problem 9781
What is
0.021
0.021
0.021
divided by
7
7
7
?
See Solution
Problem 9782
Divide
6.12
6.12
6.12
by
6
6
6
to find the result in unit form:
6.12
÷
6
=
6.12 \div 6=
6.12
÷
6
=
ones
÷
6
+
\div 6+
÷
6
+
hundredths
÷
6
\div 6
÷
6
.
See Solution
Problem 9783
Calculate 17.64 - 9.38.
See Solution
Problem 9784
Which expressions are equivalent: (A)
7
+
21
v
7+21v
7
+
21
v
vs
2
(
5
+
3
v
)
2(5+3v)
2
(
5
+
3
v
)
, (B)
7
+
21
v
7+21v
7
+
21
v
vs
3
(
4
+
7
v
)
3(4+7v)
3
(
4
+
7
v
)
, (C)
7
+
21
v
7+21v
7
+
21
v
vs
7
(
1
+
3
v
)
7(1+3v)
7
(
1
+
3
v
)
?
See Solution
Problem 9785
Convert each number to scientific notation. Example:
3
,
230
,
000
=
3.23
×
1
0
6
3,230,000=3.23 \times 10^{6}
3
,
230
,
000
=
3.23
×
1
0
6
; Find
211
,
700
,
000
,
000
=
211,700,000,000=
211
,
700
,
000
,
000
=
.
See Solution
Problem 9786
Which expressions are equal? (A)
17
(
3
m
+
4
)
17(3 m+4)
17
(
3
m
+
4
)
vs
51
m
+
68
51 m+68
51
m
+
68
, (B)
51
m
+
67
51 m+67
51
m
+
67
, (C)
51
m
−
68
51 m-68
51
m
−
68
, (D)
47
m
+
51
47 m+51
47
m
+
51
.
See Solution
Problem 9787
Which two expressions are equal: (A)
32
p
2
\frac{32 p}{2}
2
32
p
and
17
p
17 p
17
p
, (B)
32
p
2
\frac{32 p}{2}
2
32
p
and
18
p
18 p
18
p
, (C)
32
p
2
\frac{32 p}{2}
2
32
p
and
16
p
16 p
16
p
, (D)
32
p
2
\frac{32 p}{2}
2
32
p
and
14
p
14 p
14
p
?
See Solution
Problem 9788
Convert the following numbers to scientific notation: 9.
3
,
230
,
000
=
3.23
×
1
0
6
3,230,000=3.23 \times 10^{6}
3
,
230
,
000
=
3.23
×
1
0
6
, 10.
0.0000085
=
0.0000085=
0.0000085
=
See Solution
Problem 9789
Convert these numbers to scientific notation:
9.
3
,
230
,
000
=
3,230,000=
3
,
230
,
000
=
10.
0.0000085
=
0.0000085=
0.0000085
=
11.
211
,
700
,
000
,
000
=
2.117
×
1
0
11
211,700,000,000=2.117 \times 10^{11}
211
,
700
,
000
,
000
=
2.117
×
1
0
11
12.
0
,
0000000972
=
0,0000000972=
0
,
0000000972
=
See Solution
Problem 9790
Convert 1 pound to ounces using the conversion: 1 pound
(
l
b
)
=
16
(\mathrm{lb}) = 16
(
lb
)
=
16
ounces
(
o
z
)
(\mathrm{oz})
(
oz
)
.
See Solution
Problem 9791
Is it better to express a bull's weight as 1,700 pounds or
2.72
×
1
0
4
2.72 \times 10^{4}
2.72
×
1
0
4
ounces? Justify your choice.
See Solution
Problem 9792
Which two expressions are equivalent? (A)
(
5
25
)
x
\left(\frac{5}{25}\right)x
(
25
5
)
x
and
(
1
3
)
x
\left(\frac{1}{3}\right)x
(
3
1
)
x
(B)
(
1
5
)
x
\left(\frac{1}{5}\right)x
(
5
1
)
x
(C)
(
1
4
)
x
\left(\frac{1}{4}\right)x
(
4
1
)
x
(D)
(
1
6
)
x
\left(\frac{1}{6}\right)x
(
6
1
)
x
See Solution
Problem 9793
Convert 1 liter to milliliters using the fact that 1 liter
(
L
)
=
1000
(\mathrm{L})=1000
(
L
)
=
1000
milliliters
(
m
L
)
(\mathrm{mL})
(
mL
)
.
See Solution
Problem 9794
Convert 2 grams to milligrams using the conversion
1
gram
=
1000
milligrams
1 \text{ gram} = 1000 \text{ milligrams}
1
gram
=
1000
milligrams
.
See Solution
Problem 9795
Convert 3 yards to centimeters using the given conversion factors. Round to the nearest whole number.
See Solution
Problem 9796
Calculate
3
×
7
3 \times 7
3
×
7
.
See Solution
Problem 9797
Convert 2 cm to feet using the given conversion factors. Round to the nearest hundredth.
See Solution
Problem 9798
Which expressions are equivalent:
64
k
4
\frac{64 k}{4}
4
64
k
,
4
k
4 k
4
k
,
14
k
14 k
14
k
,
16
k
16 k
16
k
, or
15
k
15 k
15
k
?
See Solution
Problem 9799
Calculate the sum of
0.8090
+
0.522
+
0.123
0.8090 + 0.522 + 0.123
0.8090
+
0.522
+
0.123
and report it with the correct significant figures.
See Solution
Problem 9800
Convert 8 weeks to minutes using: 1 week = 7 days, 1 day = 24 hours, 1 hour = 60 minutes, 1 minute = 60 seconds.
See Solution
<
1
...
95
96
97
98
99
100
101
...
144
>
Start learning now
Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.
Download on the
App Store
Get it on
Google Play
Parents
Influencer program
Contact
Policy
Terms