Analyze

Problem 2101

1 2 3 ( 4 5 \square \square \square \square \square
The number of milligrams of a certain medicine a veterinarian gives to a dog varies directly with the weight of the dog. If the veterinarian gives a 30 -pound dog35\operatorname{dog} \frac{3}{5} milligram of the medicine, which equation relates the weight, ww, and the dosage, dd ? α=150w\alpha=\frac{1}{50} w α=35w\alpha=\frac{3}{5} w d=18wd=18 w d=50wd=50 w

See Solution

Problem 2102

Which graph or equation represents a nonproportional relationship?
C y=0.375xy=0.375 x
D y=59xy=\frac{5}{9} x Mark this and return Save and Exit Next Sulbmt

See Solution

Problem 2103

2xy5x=3x+1-2 x y-5 x=3 x+1

See Solution

Problem 2104

The table below shows the number of color pages a printer prints out over a period of time. \begin{tabular}{|c|c|c|c|c|} \hline \multicolumn{5}{|c|}{ Printed Pages in Color } \\ \hline Time (min), xx & 2 & 6 & 8 & 18 \\ \hline Number of pages, yy & 3 & 9 & 12 & 27 \\ \hline \end{tabular}
What is the constant of variation? 23\frac{2}{3} 32\frac{3}{2} 2 3 Mark this and retum Save and Exit Next Subrit

See Solution

Problem 2105

The formula used to compute a large-sample confidence interval for pp is p^±(z critical value )p^(1p^)n\hat{p} \pm(z \text { critical value }) \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
What is the appropriate zz critical value for each of the following confidence levels? (Round your answers to two decimal places.) (a) 95%95 \% \square (b) 90%90 \% \square (c) 99%99 \% \square (d) 80%80 \% \square (e) 81%81 \% \square

See Solution

Problem 2106

The graph of a degenerate circle is a \qquad A. point B. line C. circle D. ellipse

See Solution

Problem 2107

Let f(x)=2x25x+33x2x4f(x)=\frac{2 x^{2}-5 x+3}{3 x^{2}-x-4} This function has: 1) A yy intercept at the point \square 2) xx intercepts at the point(s) \square 3) Vertical asymptotes at x=x= \square 4) Horizontal asymptote at y=y= \square Question Help: Video 1 Video 2 Message instructor Submit Question

See Solution

Problem 2108

Order the expressions by choosing >>, <, or ==. 25×222722×5210525×52102\begin{array}{l} 2^{5} \times 2^{2} \square 2^{7} \\ 2^{2} \times 5^{2} \square 10^{5} \\ 2^{5} \times 5^{2} \square 10^{2} \end{array}

See Solution

Problem 2109

Let f(x)f(x) be a function whose derivative exists everywhere, and let T1(x)T_{1}(x) be the first-order Taylor polynomial to f(x)f(x) about x=ax=a. Which of the following statements are guaranteed to be true? Select all that apply. T1(a)=f(a)T_{1}(a)=f(a) T1(0)=f(0)T_{1}(0)=f(0) T1(a)=f(a)T_{1}^{\prime}(a)=f^{\prime}(a) T1(0)=f(0)T_{1}^{\prime}(0)=f^{\prime}(0) T1(a)=f(a)T_{1}^{\prime \prime}(a)=f^{\prime \prime}(a) T1(0)=f(0)T_{1}^{\prime \prime}(0)=f^{\prime \prime}(0) T1(a)=f(a)T_{1}^{\prime \prime \prime}(a)=f^{\prime \prime \prime}(a) T1(0)=f(0)T_{1}^{\prime \prime \prime}(0)=f^{\prime \prime \prime}(0)

See Solution

Problem 2110

Problem 3. Given a function f(x)=ex2+4xf(x)=e^{-x^{2}+4 x} (a) (6 points) find the minimum and maximum values attained by ff over an interval [0,3][0,3], (b) (2 points) find the equation of the tangent line to the graph of ff at a point (0,f(0))(0, f(0)).

See Solution

Problem 2111

19. (a) These are the first four terms in a sequence. (i) Find an expression, in terms of nn, for the nth n^{\text {th }} term of the sequence. 23+(4×n)23+(4×n) Answer \begin{array}{l} 23+(4 \times n) \\ \begin{array}{ll} & 23+(4 \times n) \\ \text { Answer } \end{array} \end{array} (ii) Explain why it is not possible for a term in the sequence to be a multiple of 8 .
Answer \qquad \qquad [1] (iii) Write down the first four terms of a sequence in which some, but not all, of the terms are multiples of 8 .
Answer \qquad [2] (b) The nth n^{\text {th }} term of a difference sequence is given by Tn=5n+41924nT_{n}=\frac{5 n+4}{192-4 n}. (i) Use the formula to find T5T_{5}.
Give your answer as a fraction in its simplest form.
Answer \qquad [1] (ii) The value of TkT_{k} can be simplified to 49\frac{4}{9}. Find the value of kk.
Answer \qquad [3] (iii) Suggest a value of nn such that the value of TnT_{n} is greater than 1 .

See Solution

Problem 2112

n=1147(3n2)2610(4n2)\sum_{n=1}^{\infty} \frac{1 \cdot 4 \cdot 7 \cdot \ldots \cdot(3 n-2)}{2 \cdot 6 \cdot 10 \cdot \ldots \cdot(4 n-2)}

See Solution

Problem 2113

Given the following polynomial and one factor, find the full factored form. Select THREE answer choices. 2x39x2+x+12;(x4)2 x^{3}-9 x^{2}+x+12 ;(x-4) (2x3)(2 x-3) (2x+3)(2 x+3) (x+4)(x+4) (x+1)(x+1) (x1)(x-1) (x4)(x-4)

See Solution

Problem 2114

5. Analyze each system. How would you rewrite the syste a. {12x5y=4512x+10y=20\left\{\begin{array}{c}\frac{1}{2} x-5 y=-45 \\ -\frac{1}{2} x+10 y=-20\end{array}\right. b. {4x+3y=243x+y=2\left\{\begin{array}{l}4 x+3 y=24 \\ 3 x+y=-2\end{array}\right. c. {3x+5y=172x+3y=11\left\{\begin{array}{l}3 x+5 y=17 \\ 2 x+3 y=11\end{array}\right. d. 6x+3y=56 x+3 y=5 2x+y=12 x+y=1 {(3x+5y)=17)3(2x+3y=11)5\left\{\begin{array}{l} (3 x+5 y)=17) 3 \\ (2 x+3 y=11)-5 \end{array}\right. e. {x+2y=62x+4y=12\left\{\begin{array}{c} x+2 y=-6 \\ 2 x+4 y=-12 \end{array}\right.

See Solution

Problem 2115

Which method would be appropriate to start to factor the polynomial below? 55x340x255 x^{3}-40 x^{2} Ractor by Grouping Greatest Common Factor Sums of Cubes Synthetic Division Difference of Two Squares AC Method

See Solution

Problem 2116

Which of the following can be factored with grouping? 8x364x2+x88 x^{3}-64 x^{2}+x-8 9x212x+49 x^{2}-12 x+4 4x294 x^{2}-9 8x3+278 x^{3}+27

See Solution

Problem 2117

When you calculate (ln)7(\ln ) 7, you would be finding the value of which of the following expressio loge7\log _{e} 7 log7e\log _{7} e log107\log _{10} 7 log710\log _{7} 10

See Solution

Problem 2118

A volleyball is served by a 6 -foot player at an initial upward velocity of 33 feet per second. The situation is modeled by the equation h=16t2+33t+6hh=-16 t^{2}+33 t+6 h representing the height in feet and tt representing the time in seconds. Using this equation, define the domain of the ball when it reaches its maximum height. (1 point) 23.01 feet 1.22 seconds -1.03 seconds 1.03 seconds

See Solution

Problem 2119

Which of the following systems has equations that are dependent?
x+y=3x+y=3 xy=1x-y=1 x=2x=2
2x=42 x=4
y=2x+3y=-2 x+3 y=2x3y=-2 x-3
y=3x+4y=3 x+4 y=3x4y=3 x-4

See Solution

Problem 2120

The angles in each of these diagr the size of each angle? a

See Solution

Problem 2121

2. Let A={xZxA=\{x \in \mathbb{Z} \mid x is even },B={5,7,8,12,13,15}\}, B=\{5,7,8,12,13,15\}, and C={3,5,9,12,15,16}C=\{3,5,9,12,15,16\}. The universal set UU is the set of all integers. Which of the following set operations returns the set {3,9}\{3,9\} ? a. (AB)C(A \cup B) \cap C c. C(AB)C-(A \cap B) b. (AB)C(\overline{A \cup B}) \cap C d. C(AB)C-(\overline{A \cap B})

See Solution

Problem 2122

Example 1 : mare stha subsect of the fomula 8u+3s=4u7v8 u+3 s=4 u-7 v

See Solution

Problem 2123

19 On donne les nombres: A=[(23)5×(23)3]÷(23)6.C=[(34)2×(23)3]2B=[(35)8÷(35)6]×(35)4.D=[(53)4÷(53)3]2\begin{array}{ll} A=\left[\left(\frac{-2}{3}\right)^{5} \times\left(\frac{-2}{3}\right)^{3}\right] \div\left(\frac{2}{3}\right)^{6} . & C=\left[\left(\frac{-3}{4}\right)^{2} \times\left(\frac{2}{3}\right)^{3}\right]^{2} \\ B=\left[\left(\frac{-3}{5}\right)^{8} \div\left(\frac{-3}{5}\right)^{6}\right] \times\left(\frac{3}{5}\right)^{4} . & D=\left[\left(\frac{-5}{3}\right)^{4} \div\left(\frac{5}{3}\right)^{3}\right]^{2} \end{array} 11^{\circ} ) Précise le signe de chacun des nombres A,B,CA, B, C et DD. 22^{\circ} ) Effectue et simplifie chacun des nombres donnés.

See Solution

Problem 2124

5. [0.75/1 Points] DETAILS MY NOTES
Use the Ratio Test to determine whether the series is convergent or divergent. n=1cos(nπ9)n!\sum_{n=1}^{\infty} \frac{\cos \left(\frac{n \pi}{9}\right)}{n!}
Identify ana_{n} : cos(πn9)n!\frac{\cos \left(\frac{\pi n}{9}\right)}{n!}
Evaluate the following limit. limnan+1an\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} \square

See Solution

Problem 2125

(1 point) Find the coordinates of all extrema of f(x)=7x49x3f(x)=7 x^{4}-9 x^{3} with domain [1,)[-1, \infty).
Absolute maximum: none
Absolute minimum: (0,0)(0,0)
Relative maxima: (1,16)(-1,16)
Relative minima: none

See Solution

Problem 2126

(1 point) Find the coordinates of all extrema of k(x)=4x9(x3)4/9k(x)=\frac{4 x}{9}-(x-3)^{4 / 9} with domain [0,)[0, \infty).
Note: WeBWorK, like many computer programs, does not know how to calculate aba^{b} if aa is negative and bb is not an integer. Rewrite any answers of this form in a different way.
Absolute maximum:
Absolute minimum:
Relative maxima:
Relative minima:

See Solution

Problem 2127

Find the critical points of the function f:R2R f: \mathbb{R}^{2} \rightarrow \mathbb{R} defined by f(x,y)=2xyx22y2+3x+2024 f(x, y) = 2xy - x^2 - 2y^2 + 3x + 2024 .

See Solution

Problem 2128

Question Watch Video Show Examples
In QRS\triangle \mathrm{QRS}, the measure of S=90,RQ=61,SR=11\angle S=90^{\circ}, \mathrm{RQ}=61, \mathrm{SR}=11, and QS=60\mathrm{QS}=60. What ratio represents the sine of R\angle R ?

See Solution

Problem 2129

4. (15)Determinare il dominio delle seguenti funzioni: a) y=6xx242x94x+8y=\sqrt{\frac{6 x-x^{2}}{4^{2 x}-9 \cdot 4^{x}+8}} b) y=x24+32x3327y=\sqrt{x^{2}-4}+\sqrt{\sqrt[3]{3^{2 x}}-3 \sqrt{27}} c) y=ex1e2xy=\frac{e^{-x}}{\sqrt{1-e^{2 x}}} d) y=(x3)3y=(x-3)^{-\sqrt{3}}

See Solution

Problem 2130

```latex \documentclass{article} \usepackage{amsmath}
\begin{document}
\section*{Problem}
Given the following conditions and questions related to the triangle and height:
\begin{enumerate} \item[(أ)] In which of the following triangles is BKBK a height in only one triangle? \item[(ب)] In which of the following triangles is BKBK a height in at least two triangles? \item[(ج)] Is there a triangle where BKBK is not a height? If yes, in which triangle? \end{enumerate}
The options provided are:
\begin{itemize} \item قسم أ: 44 \bigcirc, 3,23,2 \bigcirc, 33 \bigcirc \item قسم ب: 1,2,4,51,2,4,5 \bigcirc, 55 \bigcirc, 2,4,12,4,1 \bigcirc, 1,2,51,2,5 \bigcirc \item قسم ج: 66 \bigcirc, 6,26,2 \bigcirc \end{itemize}
\end{document} ```

See Solution

Problem 2131

d) y=(x3)3y=(x-3)^{-\sqrt{3}}
5. (5)Data la funzione: y=4x+a+by=4^{x+a}+b, determina a e bb sapendo che il suo grafico passa per il punto (12,31)\left(\frac{1}{2}, 31\right) e che la retta y=2x+5y=2 x+5 la interseca nel suo punto di ascissa -1 .

See Solution

Problem 2132

Solve each inequality. Then compare the solutions. 2x+6<103x+18<122 x+6<10 \quad-3 x+18<12 2x+6<10x\begin{array}{r} 2 x+6<10 \\ x \square \square \end{array}

See Solution

Problem 2133

QUESTION 5 In the diagram, the graph of f(x)=ax+p+qf(x)=\frac{a}{x+p}+q is drawn. D(4;3)\mathrm{D}(4 ; 3) is a point on ff and B is the yy intercept of ff. The asymptotes of ff intersect at (2;1)(2 ; 1). 5.1 Write down the equations of the asymptotes of ff. 5.2 Show that the equation of ff is f(x)=4x2+1¬qf(x)=\frac{4}{x-2}+1 \neg q 5.3 Calculate the coordinates of B. 5.4 Determine the equation of the axis of symmetry which has a positive gradient. 5.5 Determine the values of xx for which f(x)0f(x) \leq 0 5.6 The graph of ff is transformed to obtain the graph of h(x)=(14x)1h(x)=\left(\frac{1}{4} x\right)^{-1}.
Describe the transformation, in words, from ff to hh. 0=4xa2+10=\frac{4}{x a^{2}}+1

See Solution

Problem 2134

AP Calculus AB Cooper Show work neatly on your own paper.
1. Amy takes a trip from Chicago to Milwaukee. Due to road construction, she drives the first 10 miles at a constant speed of 20 mph . For the next 30 miles she maintains a constant speed of 60 mph and then stops at McDonald's for 10 minutes for a snack. She drives the next 45 miles at a constant speed of 45 mph . a. Draw a graph showing her distance along the road from her starting point as a function of time. b. Draw a graph showing her velocity as a function of time. c. What is her average speed for the trip (including her stop at McDonald's)?

See Solution

Problem 2135

The roots of a quadratic equation are: x=m±m2+4m2\quad x=\frac{m \pm \sqrt{m^{2}+4 m}}{2}. Calculate the smallest integral value of mm for which the roots are non-real.
Solve for xx if x=x+x+x+x+x+x=\sqrt{x+\sqrt{x+\sqrt{x+\sqrt{x+\sqrt{x+\ldots}}}}}

See Solution

Problem 2136

α=arccos((b2+c2a22bc)\alpha=\arccos \left(\frac{\left(b^{2}+c^{2}-a^{2}\right.}{2 b \cdot c}\right)

See Solution

Problem 2137

Nicole compró 6 libras de manzanas por $1.50\$ 1.50 la libra. La tienda le dio un descuento de $2\$ 2 sobre el total de la compra. Nicole y su amiga dividieron el costo de la compra por igual. Inserta símbolos de agrupación en la expresión numérica de manera que muestre cuánto pagó cada una de ellas por las manzanas. 6×1.502÷26 \times 1.50-2 \div 2

See Solution

Problem 2138

Nicole compró 6 libras de manzanas por \1.50lalibra.Latiendaledioundescuentode 1.50 la libra. La tienda le dio un descuento de \2 2 sobre el total de la compra. Nicole y su amiga dividieron el costo de la compra por igual. Inserta símbolos de agrupación en la expresión numérica de manera que muestre cuánto pagó cada una de ellas por las manzanas. 6×1.502÷26 \times 1.50-2 \div 2

See Solution

Problem 2139

1n=m01cos(ncos1x)cos(mcos1x)11x2dx12π(1+cos2nθ)dθ12(θ+sin2nθ2)]0π\begin{array}{l} \int_{-1}^{n}=m \\ \int_{0}^{1} \cos \left(n \cos ^{-1} x\right) \cos \left(m \cdot \cos ^{-1} x\right) \frac{1}{\sqrt{1-x^{2}}} d x \\ \int_{\frac{1}{2}}^{\pi}(1+\cos 2 n \theta) d \theta \\ \left.\frac{1}{2}\left(\theta+\frac{\sin 2 n \theta}{2}\right)\right]_{0}^{\pi} \end{array} n-m im

See Solution

Problem 2140

For problems 1-4, circle the unit of measurement that makes the most sense to use for the situation.
1. Total area of the continent of Africa A. Square feet
2. Age of a stative made last weelk B. Square miles A. Days c. Square inches B. Months C. Years
3. Weight of a newborn baby
4. Weight of a car A. Ounces A. Milligram B. Pounds B. Gram C. Tons C. Kilogram

See Solution

Problem 2141

Trouver toutes les applications ff définies de R\boldsymbol{R}^{*} dans RR^{\prime} telles que: (xR)f(1x)=x+1+x2(\forall x \in R) f\left(\frac{1}{x}\right)=x+\sqrt{1+x^{2}}

See Solution

Problem 2142

mplete the following sentence. 1{ }^{-1} denotes the inverse of a function ff, then the graphs of ff and f1f^{-1} are symmetric with respect to the line \square . (pe an equation.)

See Solution

Problem 2143

If (1,2)(-1,2) is a point on the graph of a one-to-one function ff, which of the following points is on the graph of f1f^{-1} ?
Choose the correct answer below. (1,2)(-1,-2) (2,1)(-2,1) (1,2)(1,-2) (2,1)(2,-1)

See Solution

Problem 2144

4cr=(0,2)(0,2)c2=164c2=±12c=±234 \left\lvert\, \begin{array}{l} c-r=(0,2)(0,-2) \\ c^{2}=16-4 \\ c^{2}= \pm \sqrt{12} \\ c= \pm 2 \sqrt{3} \end{array}\right. 3) (x1)29+(y+5)24=1\frac{(x-1)^{2}}{9}+\frac{(y+5)^{2}}{4}=1 c=(1,5)c=(1,-5) 5) x2+9y2+6x90y+225=0x^{2}+9 y^{2}+6 x-90 y+225=0

See Solution

Problem 2145

780 participants suffering from depression were randomly assigned to one of three groups. Over a four-month period, the first group received a low dosage of an experimental drug, the second group received a high dosage of the drug, and the third group received a placebo. At the end of the period each participant rated their mood on a scale of 151-5. Identify the treatments. The experimental drug, mood Placebo, low dosage, high dosage Mood level 1, mood level 2, mood level 3, mood level 4, mood level 5 The experimental drug

See Solution

Problem 2146

Question 7 2 pts
Which sample would have the most bias if the survey is concerned with a car's performance? a very large sample a randomly chosen sample a very small sample a sample made up of people who drive BMWs

See Solution

Problem 2148

Which angles are vertical angles? IK\triangle I K and HIF\angle H I F JIK\angle J I K and JIF\angle J I F JIK\angle J I K and EFI\angle E F I IK\angle I K and EFD\angle E F D Submit

See Solution

Problem 2149

Use the given graph of y=f(x)y=f(x) to evaluate the following. (a) f(4)f(-4) (b) f(3)f(3) (c) f1(0)f^{-1}(0) (d) f1(4)f^{-1}(-4) (a) f(4)=f(-4)= \square

See Solution

Problem 2150

Select the correct answer. The directrix and vertex of a parabola are shown on the graph. What is the vertex form of the equation for the associated parabola? A. x=14(y+2)22x=\frac{1}{4}(y+2)^{2}-2 B. x=11(y2)2+2x=\frac{1}{1}(y-2)^{2}+2 C. x=14(y+2)22x=-\frac{1}{4}(y+2)^{2}-2 D. x=14(y+2)2+2x=-\frac{1}{4}(y+2)^{2}+2 Reset Next

See Solution

Problem 2151

For the given equation, list the intercepts and test for symmetry. y=x23x28y=x^{2}-3 x-28
What is/are the intercept(s)? Select the correct choice and, if necessary, fill in the answer box within your choice. A. The intercept(s) is/are \square . (Type an ordered pair. Use a comma to separate answers as needed.) B. There are no intercepts.

See Solution

Problem 2152

3. Un grupo de estudiantes realizó un experimento con el propósito de investigar la relación entre la temperatura y la solubilidad de una sal en agua. De acuerdo con el diseño, consideraron 100 mL de agua en cada ensayo, diferentes cantidades de soluto, variando la temperatura de la mezcla. Los resultados obtenidos se muestran en la siguiente tabla: \begin{tabular}{|c|c|} \hline \begin{tabular}{c} Temperatura \\ (C)(\circ \mathrm{C}) \end{tabular} & \begin{tabular}{c} Solubilidad \\ (g de sal/100 mL de agua) \end{tabular} \\ \hline 0 & 10 \\ \hline 20 & 15 \\ \hline 40 & 20 \\ \hline 60 & 25 \\ \hline 80 & 30 \\ \hline \end{tabular}
Con base en estos datos, es correcto concluir que: A) La solubilidad de la sal no cambia con el incremento de la temperatura B) Mientras más alta es la temperatura, mayor es la solubilidad de esa sal en agua C) Conforme se incrementa la temperatura, menos soluble en agua es la sal D) Existe una relación inversamente proporcional entre la temperatura del sistema y la solubilidad de la sal en agua E) ninguna es correcta

See Solution

Problem 2153

In the accompanying diagram of right triangle ABC,CA B C, \angle C is a right angle. Which equation is valid for ABC\triangle A B C ? A. cosA=cb\cos A=\frac{c}{b} B. tanA=ba\tan A=\frac{b}{a} C. sinA=ac\sin A=\frac{a}{c} D. cosB=ab\cos B=\frac{a}{b}

See Solution

Problem 2154

(a) Find the characteristic equation of the following matrix: [501410201]\left[\begin{array}{rrr} 5 & 0 & 1 \\ -4 & 1 & 0 \\ -2 & 0 & 1 \end{array}\right] (λ1)[λ2+6λ7]=0(\lambda-1)\left[\lambda^{2}+6 \lambda-7\right]=0 λ26λ+7=0\lambda^{2}-6 \lambda+7=0 (λ1)[λ2+6λ+7]=0(\lambda-1)\left[\lambda^{2}+6 \lambda+7\right]=0 (λ1)[λ26λ+7]=0(\lambda-1)\left[\lambda^{2}-6 \lambda+7\right]=0 (λ1)[λ26λ7]=0(\lambda-1)\left[\lambda^{2}-6 \lambda-7\right]=0

See Solution

Problem 2155

Question 3.b
Would you use primary or secondary data to investigate each of the following situations? Explain. "You want to determine the make of the best-selling car last year."

See Solution

Problem 2156

In a class survey, students are asked how many hours they sleep per night. In the sample of 22 students, the mean was 5.77 hours with a standard deviation of 1.572 hours. a) Construct 90%,95%90 \%, 95 \%, and 99%99 \% confidence interval for the mean number of hours slept per night in the population. b) Compare the results of all these confidence intervals, how does increasing the level of confidence affect the size of the margin of error?

See Solution

Problem 2157

5.2 Check Your Understanding
1. Suppose we choose an American adult at random. Define two events: A=A= the person has a cholesterol level of 240 milligrams per deciliter of blood ( mg/dl\mathrm{mg} / \mathrm{dl} ) or above (high cholesterol) B=B= the person has a cholesterol level of 200 to <240mg/dl<240 \mathrm{mg} / \mathrm{dl} (borderline high cholesterol)

According to the American Heart Association, P(A)=0.16P(A)=0.16 and P(B)=0.29P(B)=0.29 a) Explain why events AA and BB are mutually exclusive. b) Say in plain language what the event " AA or BB " is. Then find P(AP(A or B)B). c) Let CC be the event that the person chosen has a cholesterol level below 200mg/dl200 \mathrm{mg} / \mathrm{dl} (normal cholesterol). Find P(C)P(C).

See Solution

Problem 2158

10. En un laboratorio se cuenta con 400 mililitros de una disolución acuosa de CaCl2 de concentración 20\% masa/volumen. Si se pretende disminuir la concentración de esa mezcla hasta un valor igual a 5%5 \% masa/volumen, sería conveniente: A) adicionar más soluto. B) evaporar una parte del solvente. C) calentar a ebullición la solución. D) adicionar solvente a la disolución. E) ninguna de las anteriores

See Solution

Problem 2159

5. Aşağıdaki Üretim Imkánları Eğrisine Göre Hangisi Yanlıştır? A)Z Noktasında En Yüksek Üretim Vardır B) U Ve Y Kaynak Yetersizliğini Gösterir C) A Ve B Iki Malı Temsil Eder D)T Noktasında Eksik Istihdam Vardir E) X Ve Y Tam Istihdamı Verir

See Solution

Problem 2160

μ=23\mu=23 μ>32\mu>32 μ<352\mu<352 μ10\mu \neq 10 a) Which statement could be used for the alternative hypothesis for a left-tail test? b) Which statement could be used for the null hypothesis? c) Which statement could be used for the alternative hypothesis for a two-tail test? d) Which statement could be used for the alternative hypothesis for a right-tail test?

See Solution

Problem 2161

The equations of three lines are given below.
Line 1: y=2x+7y=-2 x+7 Line 2: y=2x5y=-2 x-5 Line 3:6x+3y=63: 6 x+3 y=6
For each pair of lines, determine whether they are parallel, perpendicular, or neither.
Line 1 and Line 2 : Parallel Perpendicular Neither Line 1 and Line 3 : Parallel Perpendicular Neither Line 2 and Line 3 : Parallel Perpendicular Neither

See Solution

Problem 2162

Which statements about opposites are true? Select each correct answer. A number and its opposite are located the same distance from zero on a number line. The product of a number and its opposite is always 1. The opposite of zero is zero. The opposite of a negative number is always a positive number.

See Solution

Problem 2163

Soiving a 2 x 2 system or inear equations that is inconsistent or consistent... \begin{tabular}{|c|c|} \hline System A 2x+y2=02xy=2\begin{aligned} -2 x+y-2 & =0 \\ 2 x-y & =-2 \end{aligned} & \begin{tabular}{l} The system has no solution. The system has a unique solution: \\ (x,y)=(x, y)= \square \square The system has infinitely many solutions They must satisfy the following equation: y=y= \square \end{tabular} \\ \hline System B 3xy=63x+y=6\begin{array}{l} 3 x-y=6 \\ 3 x+y=6 \end{array} & \begin{tabular}{l} The system has no solution. The system has a unique solution: (x,y)=(x, y)= \square \square The system has infinitely many solutions. \\ They must satisfy the following equation: \end{tabular} \\ \hline \end{tabular}

See Solution

Problem 2164

Which list shows the absolute values in order from least to greatest? Select each correct answer. |21.95|. |-22.02|. |-22.11| 3.07,3.25,3.31|-3.07|,|-3.25|,|3.31| 7.38:7.39,7.41|-7.38|:|7.39|,|-7.41| 17.12:17.0817.06|-17.12|:|-17.08|| | 17.06 \mid

See Solution

Problem 2165

D 149\quad-\frac{14}{9}
3 ¿Cuál de estas expresiones es equivalente a (12)4:84\left(\frac{1}{2}\right)^{4}: 8^{4} ? A (12:8)0\left(\frac{1}{2}: 8\right)^{0} B (12:8)4\left(\frac{1}{2}: 8\right)^{4} C (12:8)8\left(\frac{1}{2}: 8\right)^{8} D (12:8)16\left(\frac{1}{2}: 8\right)^{16}

See Solution

Problem 2166

Find the following for the given functions. f(x)=4x+1,g(x)=x24f(x)=4 x+1, \quad g(x)=x^{2}-4 (a) (f+g)(x)=(f+g)(x)= \square (b) (fg)(x)=(f-g)(x)= \square (c) (fg)(x)=(f g)(x)= \square (d) (f/g)(x)=(f / g)(x)= \square
What is the domain of f/gf / g ? (Enter your answer using interval notation.) \square

See Solution

Problem 2167

Given the following exponential function, identify whether the change represents growth of decay, and determine the percentage rate of increase or decrease. y=100(0.971)xy=100(0.971)^{x}

See Solution

Problem 2168

Directions: Answer the questions re 1) 2)
How many real roots? \qquad What are they? \qquad

See Solution

Problem 2169

At least one of the answers above is NOT correct.
A street light is at the top of a 22 ft pole. A 6 ft tall girl walks along a straight path away from the pole with a speed of 5ft/sec5 \mathrm{ft} / \mathrm{sec}. At what rate is the tip of her shadow moving away from the light (ie. away from the top of the pole) when the girl is 40 ft away from the pole? Answer: (118)2[40222+(118)2+402(5)\left(\frac{11}{8}\right)^{2}\left[\frac{40}{\sqrt{22^{2}+\left(\frac{11}{8}\right)^{2}+40^{2}}}(5)\right.
How fast is her shadow lengthening? Answer: 158\frac{15}{8}
Note: You can earn partial credit on this problem. Preview My Answers Submin' Answers

See Solution

Problem 2170

Example 2: {y=(x+2)2+5y=5\left\{\begin{array}{l}y=-(x+2)^{2}+5 \\ y=5\end{array}\right.
Number of Solution(s): \qquad What are the solutions?

See Solution

Problem 2171

Given the equation y=5sin(6x+18)+4y=5 \sin (6 x+18)+4
The amplitude is: \square 5 050^{5}
The period is: 2π6\frac{2 \pi}{6} \square 080^{8}
The horizontal shift is: 18 \square 0530^{5} 3 units to the \square Left 080^{8}
The midline is: y=y= \square 00^{\circ}

See Solution

Problem 2172

The domain of the function f(x)f(x) is [4,16][4,16] and the range is [14,10][-14,10]. Using interval notation, find the domain and range of g(x)=f(x2)g(x)=f(x-2).
Answer Attempt 1 out of 3
Domain: \square Range: \square [, ] [, ) (, ] (,) \infty

See Solution

Problem 2173

Cool-down The LL-shaped conductor in the figure below moves at 10 m/s10 \mathrm{~m} / \mathrm{s} across and touches a stationary LL-shaped conductor in a 0.1 T magnetic field. The two vertices overlap, so that the enclosed area is zero, at t=0t=0. The conductor has a resistance of 0.02Ω0.02 \Omega per meter. V=10 mV=10 \mathrm{~m} i. What is the direction of the induced current? ii. Find expressions for the induced emf and the induced current as functions of time. iii. Evaluate the induced emf and current at t=0.1 st=0.1 \mathrm{~s}.

See Solution

Problem 2174

``` for (int i=1;i<=n;i++){ for (int j = n;j>= 1;j/=3){ opO; } for(int k = 3; k n(1/3n+log3n)n\left(1 / 3 n+\log _{3} n\right) b. 1/3n2(log3n1)1 / 3 n^{2}\left(\log _{3} n-1\right) c. 1/3n2(1+log3n)1 / 3 n^{2}\left(1+\log _{3} n\right) d. 1/3n31 / 3 n^{3} e. None

See Solution

Problem 2175

An inverted cylindrical cone, 40 ft deep and 20 ft across at the top, is being filled with water at a rate of 19ft3/min19 \mathrm{ft}^{3} / \mathrm{min}. At what rate is the water rising in the tank when the depth of the water is:
1 foot? Answer= \square 10 feet? Answer= \square 39 feet? Answer= \square

See Solution

Problem 2176

ACT math scores follow a normal distribution with a mean of of 18 and a standard deivation of 6 . Suppose we choose a student at random.
What is the probability that the student scores between 14 and 22?

See Solution

Problem 2177

6. What are the equation and slope of the line shown on the grid? A. y=8y=8; slope is zero B. y=8y=8; slope is undefined C. x=8x=8; slope is zero D. x=8x=8; slope is undefined

See Solution

Problem 2178

8. What is the equation of the line shown on the grid? A. y=xy=x B. y=4.5y=-4.5 C. x=6x=-6 D. x=4.5x=-4.5

See Solution

Problem 2179

lowing (8 marily ]] is 90
3. The cost (C) of yearbooks for a school is given by the equation C=375+25n\mathrm{C}=\mathbf{3 7 5}+\mathbf{2 5 n}, where nn is the number of yearbooks purchased. What is the initial value? A) $375\$ 375 B) $25\$ 25 C) $15\$ 15 D) so
4. The table below represents a linear relation. \begin{tabular}{|c|c|} \hline Time (t) & Distance (D) \\ \hline 0 & 34 \\ \hline 1 & 52 \\ \hline 2 & 70 \\ \hline 3 & 88 \\ \hline 4 & 106 \\ \hline \end{tabular}

Which equation represents this relation? A) D=34+18t\mathrm{D}=34+18 \mathrm{t} B) D=18+34t\mathrm{D}=18+34 \mathrm{t} C) D=34tD=34 t D) D=18tD=18 \mathrm{t}

See Solution

Problem 2180

Reflect triangle STU across line ST. Which of these is a valid reason why the image of UU will coincide with JJ ? a. The image of UU and JJ are on the same side of STS T and make the same angle with it at TT. b. The image of UU and JJ are the same distance along the same ray from TT. c. The image of UU and JJ will not coincide after reflection over STS T. d. Line STS T is the perpendicular bisector of the segment connecting UU and JJ, because the perpendicular bisector is determined by 2 points that are both equidistant from the endpoints of a segment.

See Solution

Problem 2181

التمزين الثالك: - p×qp2+q2\frac{p \times q}{p^{2}+q^{2}} و عين حصر الكل من 2) حدد إشارة العددين - E=(5p+q)2(q+3)2E=\sqrt{(5 p+q)^{2}}-\sqrt{(q+3)^{2}} أوجد حصر اللعدد E حيث

See Solution

Problem 2183

The volume of the cereal box must be 192in33192 \mathrm{in}^{3}{ }^{3}.
Height: (x+10)(x+10) in.
Length: xx in.
Polynomial equation: x3+6x240x=192x^{3}+6 x^{2}-40 x=192
In the context of this problem, which solutions to the polynomial equation can you eliminate because they do not make sense? \checkmark x=8x=-8 \checkmark x=4x=-4 xx x=6x=6 COMPleti What are the dimensions of the cereal box? The length is \square in., the width is \square \square in. Dons
Solutions: x=8,x=4x=-8, x=-4, and x=6x=6

See Solution

Problem 2184

The following table pertains to basketball players selected in the first round of the 1991 NBA draft. It lists the draft number of each player and the annual salary of the contract that the player signed. The missing entries are for players who signed with European teams. \begin{tabular}{|c|r|r|r|c|r|} \hline Pick \# & Salary & Pick \# & \multicolumn{1}{c|}{ Salary } & Pick \# & Salary \\ \hline 1 & 3,333,3333,333,333 & 10 & 1,010,6521,010,652 & 19 & 828,750 \\ \hline 2 & 2,900,0002,900,000 & 11 & 997,120 & 20 & 740,000 \\ \hline 3 & 2,857,1002,857,100 & 12 & 1,370,0001,370,000 & 21 & 775,000 \\ \hline 4 & 2,750,0002,750,000 & 13 & 817,000 & 22 & 180,000 \\ \hline 5 & 2,458,3332,458,333 & 14 & 675,000 & 23 & 550,000 \\ \hline 6 & 1,736,2501,736,250 & 15 & 950,000950,000^{*} & 24 & 610,000 \\ \hline 7 & 1,590,0001,590,000 & 16 & 1,120,0001,120,000 & 25 & 750,000 \\ \hline 8 & 1,500,0001,500,000 & 17 & 1,120,0001,120,000 & 26 & 180,000 \\ \hline 9 & 1,400,0001,400,000 & 18 & 875,000 & 27 & 605,000 \\ \hline \end{tabular}
1. Describe the scatterplot (use Desmos). (3 points)
2. Use Desmos and list the following: the LSRL, the Correlation, and the Coefficient of Determination. (3 points)
3. Calculate the predicted salary for a player picked 12th 12^{\text {th }}. Also calculate the residual for this value. Was your prediction an overestimate or an underestimate? (3 points)

See Solution

Problem 2185

y=1/2x19y=4x+4\begin{array}{c}y=1 / 2 x-19 \\ y=4 x+4\end{array}

See Solution

Problem 2186

1. How many times does average 0 run?  for (int i=n;i>0;i=1) for ( int j=n;j>0;j=1) for (int kn;k>0;k=1) average 0\begin{array}{l} \text { for (int } \mathrm{i}=\mathrm{n} ; \mathrm{i}>0 ; \mathrm{i}=1) \\ \qquad \begin{aligned} \text { for }(\text { int } \mathrm{j}=\mathrm{n} ; \mathrm{j}>0 ; \mathrm{j}=1) \\ \text { for (int } \mathrm{k}-\mathrm{n} ; \mathrm{k}>0 ; \mathrm{k}=1) \\ \text { average } 0 \end{aligned} \end{array} a. (logn)2(\log n)^{\wedge} 2 b. n3n^{\wedge} 3 c. nn2n \sqrt[2]{n} d. n2n^{\wedge} 2

See Solution

Problem 2187

Find the critical numbers of the function. (Enter your answers as a comma-separated list. If an answer does not exist, enter DNE.) f(x)=4x36x224xx=\begin{array}{l} f(x)=4 x^{3}-6 x^{2}-24 x \\ x=\square \end{array} Need Help? Read It

See Solution

Problem 2188

Plot the points (0,5)(0,-5) and (2,4)(2,4) on the coordinate plane.

See Solution

Problem 2189

Consider the following. (If an answer does not exist, enter DNE.) f(x)=x33x27x+5f(x)=x^{3}-3 x^{2}-7 x+5
Find the interval(s) on which ff is concave up. (Enter your answer using interval notation.) \square Find the interval(s) on which ff is concave down. (Enter your answer using interval notation.) \square Find the inflection point of ff. \square (x,y)=()(x, y)=(\square) Need Help? Read It

See Solution

Problem 2190

4. Two golf courses offer student memberships. Information about the linear relationships between the total cost, C, in dollars, and the number of games players, nn, at the two golf courses is given below. a) Which course has a greater initial value?
The second golf course b) Which course will cost more for 35 games? Show your work. 15351=10293=6102÷617N=17c+51\begin{array}{l} 153-51=102 \\ 9-3=6 \\ 102 \div 6 \\ 17 \\ N=17 c+51 \end{array}
Second Golf Course \begin{tabular}{|c|c|} \hline \begin{tabular}{c} Number of \\ games, n\boldsymbol{n} \end{tabular} & \begin{tabular}{c} Total cost, C\boldsymbol{C} \\ (\) \end{tabular} \\ \hline 3 & 51 \\ \hline 5 & 85 \\ \hline 9 & 153 \\ \hline 12 & 204 \\ \hline \end{tabular} 15351=15351102÷7102÷61417\begin{array}{cc} 153-51= & 153-51 \\ 102 \div 7 & 102 \div 6 \\ 14 & 17 \end{array} N=14c+51N=17c+51N=14 c+51 \quad N=17 c+51$

See Solution

Problem 2191

A. 1 B. 2 many angle measurements do you need to figure out the measurements of all the labeled angles the figure below? 1 2 4 3 C. 3 D. 4

See Solution

Problem 2192

what number it converges to. a) n=1cos(1n)cos(1n+2)\sum_{n=1}^{\infty} \cos \left(\frac{1}{n}\right)-\cos \left(\frac{1}{n+2}\right)

See Solution

Problem 2193

A ladder 23 ft long rests against a vertical wall. If the top of the ladder is being pulled up the wall at a rate of 19ft/s19 \mathrm{ft} / \mathrm{s}, at what rate is the bottom of the ladder moving towards the wall when the top of the ladder is 7 ft from the ground?

See Solution

Problem 2194

5. Joey enlarged a 3 -inch by 5 -inch photograph on a copy machine. He enlarged it four times. The table below shows the area of the photograph after each enlargement. \begin{tabular}{|l|c|c|c|c|c|} \hline Enlargement & 0 & 1 & 2 & 3 & 4×24 \times 2 \\ \hline Area (square inches) & 15y15 y & 18.8 & 23.4 & 29.3 & 36.6y36.6 y \\ \hline \end{tabular}
What is the average rate of change of the area from the original photograph to the fourth enlargement, to the nearest tenth? 4.34.55.46.036.61540=21.64\begin{array}{ll} 4.3 \\ 4.5 \\ 5.4 \\ 6.0 \end{array} \quad \frac{36.6-15}{4-0}=\frac{21.6}{4}

See Solution

Problem 2195

The wheel and piston device shown above consists of a wheel of radius 1 foot that is connected at the point W w io a piston at P\mathbf{P} by a cannecting rod (represented by the segment WP in the diagram) of length 8 feet. The wheell notates counterclockwise at a rate of of 6 radians per second as the piston moves up and down along the yy-axis. (Click the hint to see animation). The point WW is at ( 1,0 ) at tt - 0 geconds: a) What is the measure of angle θ\theta after tt seconds? θ=6t radians \theta=6 t \odot \text { radians } =6t=6 t radians b) Find the coordinates of point W at time tt seconds. x=cos(6t)θy=sin(6t)θ\begin{array}{l} x=\cos (6 t) \theta \\ y=\sin (6 t) \theta \end{array} c) Find the yy-coordinate of P\mathbf{P} at time tt seconds. (The xx-coordinate of P\mathbf{P} is ahways zero.)

See Solution

Problem 2196

You pay $1.00\$ 1.00 to play a game in which you roll one fair die. If you roll a 6 on the first roll, you win $5.00\$ 5.00. If you roll a 1 or a 2 , you win $2.00\$ 2.00. If not, you lose your money.
3 Multiple Choice 1 point What is the expected value of this game? \$0.25 \$0.50 -\$0.50 -\$1.00

See Solution

Problem 2197

3. A car is moving at a constant speed of 16 kilometers per hour (km/hr)(\mathrm{km} / \mathrm{hr}) while traveling in a circle. Why is the velocity of the car changing? A. because the direction of the car is changing B. because the mass of the car is constant C. because the speed is constant D. because the time is changing

See Solution

Problem 2198

1) 7(2+5v)=3v+147(2+5 v)=3 v+14 (14+35v)=3v+(14+35 v)=3 v+

See Solution

Problem 2199

The equations of two conics are given below. Choose the correct classification for each, and then provide the requested information. \begin{tabular}{|l|l|} \hline (a) 3x26xy2=0-3 x^{2}-6 x-y-2=0 & (Choose one) \nabla \\ \hline (b) 16x24y232x8y+44=0-16 x^{2}-4 y^{2}-32 x-8 y+44=0 & (Choose one) \boldsymbol{} \\ \hline \end{tabular}

See Solution

Problem 2200

What is the slope of the line represented by the equation y=12x+14y=-\frac{1}{2} x+\frac{1}{4} ? 12-\frac{1}{2} 14-\frac{1}{4} 14\frac{1}{4} 12\frac{1}{2}

See Solution
banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord