Math  /  Calculus

QuestionQuestion Evaluate xe5xdx\int x e^{5 x} d x. Choose u=xu=x and dv=e5xdxd v=e^{5 x} d x.

Studdy Solution

STEP 1

1. We are using integration by parts to solve the integral.
2. The formula for integration by parts is udv=uvvdu\int u \, dv = uv - \int v \, du.
3. We have chosen u=xu = x and dv=e5xdxdv = e^{5x} \, dx.

STEP 2

1. Identify dudu and vv from the chosen uu and dvdv.
2. Apply the integration by parts formula.
3. Simplify and solve the resulting integral.

STEP 3

Differentiate uu to find dudu:
u=x u = x du=dx du = dx
Integrate dvdv to find vv:
dv=e5xdx dv = e^{5x} \, dx
To find vv, integrate e5xe^{5x}:
v=e5xdx=15e5x v = \int e^{5x} \, dx = \frac{1}{5} e^{5x}

STEP 4

Apply the integration by parts formula udv=uvvdu\int u \, dv = uv - \int v \, du:
xe5xdx=uvvdu \int x e^{5x} \, dx = uv - \int v \, du
Substitute the expressions for uu, vv, and dudu:
xe5xdx=x15e5x15e5xdx \int x e^{5x} \, dx = x \cdot \frac{1}{5} e^{5x} - \int \frac{1}{5} e^{5x} \, dx
=x5e5x15e5xdx = \frac{x}{5} e^{5x} - \frac{1}{5} \int e^{5x} \, dx

STEP 5

Solve the remaining integral e5xdx\int e^{5x} \, dx:
e5xdx=15e5x \int e^{5x} \, dx = \frac{1}{5} e^{5x}
Substitute back into the expression:
x5e5x1515e5x \frac{x}{5} e^{5x} - \frac{1}{5} \cdot \frac{1}{5} e^{5x}
=x5e5x125e5x = \frac{x}{5} e^{5x} - \frac{1}{25} e^{5x}
Combine the terms:
=(x5125)e5x = \left(\frac{x}{5} - \frac{1}{25}\right) e^{5x}
=5x125e5x = \frac{5x - 1}{25} e^{5x}
Don't forget the constant of integration CC:
=5x125e5x+C = \frac{5x - 1}{25} e^{5x} + C
The evaluated integral is:
5x125e5x+C \boxed{\frac{5x - 1}{25} e^{5x} + C}

Was this helpful?

Studdy solves anything!

banner

Start learning now

Download Studdy AI Tutor now. Learn with ease and get all help you need to be successful at school.

ParentsInfluencer programContactPolicyTerms
TwitterInstagramFacebookTikTokDiscord